期刊文献+

树转录翻译模型解码优化

Decoding Optimization in Tree Transducer based Translation Model
原文传递
导出
摘要 针对树转录翻译模型中的规则二元化和解码算法进行深入研究,通过四分化的二元化转换方法减少词汇化同步转录规则的中间项目,通过实时判断中间项目有效性的RR-CKY算法来避免冗余项目生成。实验证明,这两种方法能有效减少解码过程中的中间项目,提高机器翻译解码效率,在一定程度上提高机器翻译效果。 This paper proposes two methods to improve the efficiency of rule binarization and decoding in tree transducer based translation model. The authors convert synchronous transducer rules to four kinds of binary rules to reduce the tem- porary items, and propose RR - CKY decoding algorithm, which can avoid part of redundant items along with decoding. The experiments show that these two methods can reduce the number of temporary items and make decoding faster. They can also improve the quality of machine translation.
出处 《现代图书情报技术》 CSSCI 北大核心 2013年第9期23-29,共7页 New Technology of Library and Information Service
基金 中国科学技术信息研究所重点工作项目"多语言科技信息语义关联网络构建及其应用"(项目编号:ZD2012-3-3) 中国科学技术信息研究所学科建设项目"自然语言处理"(项目编号:XK2012-6)的研究成果之一
关键词 机器翻译 树转录翻译模型 句法分析 RR—CKY算法 Machine translation Tree transducer based translation model Parsing RR - CKY algorithm
  • 相关文献

参考文献22

  • 1Wu D. Toward Machine Translation with Statistics and Syntax and Semantics[ C ]. In : Proceedings of the IEEE Workshop on Automatic Speech Recognition and Understanding ( ASRU' 09 ) , Merano, Ita- ly. 2009:12-21.
  • 2Chiang D. Hierarchical Phrase - based Translation [ J ]. Computa- tional Linguistics, 2007, 33 ( 2 ) : 201 - 228.
  • 3Marcu D, Wang W, Echihabi A, et al. SPMT: Statistical Machine Translation with Syntactified Target Language Phrases[ C ]. In: Pro- ceedings of the 2006 Conference on Empirical Methods in Natural Laneuaee Processine. Svdnev. Australia_ 2006.44 - 52.
  • 4Zhang H, Huang L, Gildea D, et al. Synchronous Binarization for Machine Translation[ C ]. In : Proceedings of the Human Language Technology Conference of the North American Chapter of the Associa- tion of Computational Linguistics. Stroudsburg, PA, USA : Associ- ation for Computational Linguistics ,2006:256 - 263.
  • 5Wang W, Knight K, Marcu D. Binarizing Syntax Trees to Improve Syntax - based Machine Translation Accuracy[ C]. In: Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Lan- guage Processing and Computational Natural Language Learning, Prague, Czech Republic. Stroudsburg, PA, USA: Association for Computational Linguistics, 2007 : 746 - 754.
  • 6Fang L, Chung T, Gildea D. Terminal - aware Synchronous Bina- rization[ C ]. In : Proceedings of the 49th Annual Meeting of the As- sociation for Computational Linguistics, Portland, Oregon, USA. 2011 : 401 -406.
  • 7The Penn Treebank Project[ DB/OL]. [ 2013 - 06 - 15 ]. http :// www. eis. upenn, edu/ treebank/.
  • 8Collins M. Head - driven Statistical Models for Natural Language Parsing [ D ]. Philadelphia : University of Pennsylvania, 1999.
  • 9Charniak E. A Maximum - Entropy - Inspired Parser[ C ]. In: Pro- ceedings of the 1 st North American Chapter of the Association for Computational Linguistics Conference. 2000:132 - 139.
  • 10Klein D, Manning C D. Accurate Unlexicalized Parsing [ C ]. In : Proceedings of the 41st Annual Meeting on Association for Computa- tional Linguistics. 2003:423 - 430.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部