期刊文献+

融入社会关系的微博排名策略研究 被引量:1

Research on Microblog Ranking Strategy with the Social Relations
原文传递
导出
摘要 社会化媒体的出现,使得搜索环境发生重大变化。针对当前微博搜索排名的不足,在分析微博社会关系的基础上,综合可测量的参数指标,提出融入社会关系的微博排名策略,即在传统的PageRank排名算法中增加社会强度,综合考虑用户知名度、信息知名度、信息质量、时间因素等其他参数指标。实验结果显示,取各参数指标的平均值(AVG)能获得排名精度最高的效果,优于微博传统排名算法并且能获得更多社会关系。 The emergence of social media makes the environment of retrieving changed. Since the shortcomings of retrie- ving ranking in microblog, this paper analyzes the microblogging social network relationship, and proposes microblogging ranking strategy with the social relations. That means, social strength is added to the traditional PageRank ranking algo- rithm, and some related indicators including people popularity, information popularity, information quality, the time factor and some others are considered. The experimental results show that AVG has a higher accuracy, and it can obtain more social relationships compared with conventional ranking algorithm.
出处 《现代图书情报技术》 CSSCI 北大核心 2013年第9期74-81,共8页 New Technology of Library and Information Service
基金 国家自然科学基金项目"社会化媒体集成检索与语义分析方法研究"(项目编号:71273194) 武汉大学2013年研究生自主科研项目"社会化媒体检索策略研究"(项目编号:2013104010206)的研究成果之一
关键词 社会关系 微博 PageRank排名 Social relations Microblogging PageRank Ranking
  • 相关文献

参考文献27

  • 1lava A, Song X, Finin T, et al. Why We Twitter: UnderstandingMicoblogging Usage and Communities [ C ]. In : Proceedings of the 9th WEBKDD and 1st SNA - KDD 2007 Workshop on Web Mining and Social Network Analysis, San Jose, California, USA. New York: ACM, 2007:56 -65.
  • 2Khonsari K K, Nayeri Z A, Fathalian A, et al. Social Network Analysis of Iran' s Green Movement Opposition Groups Using Twit- ter[ C ]. In: Proceedings of 2010 International Conference on Ad- vances in Social Networks Analysis and Mining. 2010:414 - 415.
  • 3Song J, Lee S, Kim J, et al. Spam Filtering in Twitter Using Send- er - Receiver Relationship [ C]. In : Proceedings of the 14th Inter- national Conference on Recent Advances in Intrusion Detection (RAID' 11 ). Berlin, Heidelberg: Springer - Verlag, 2011 : 301 - q17.
  • 4Dong A, Zhang R, Kolari P, et al. Time is of the Essence : Impro- ving Recency Ranking Using Twitter Data[ C ]. In: Proceedings of the 19th International Conference on World Wide Web ( WWW' 10). New York: ACM, 2010:331 -340.
  • 5Morris M R, Jaime T, Panovich K. A Comparison of Information Seeking Using Search Engines and Social Networks [ C ]. In : Pro- ceedings of the 4th International AAAI Conference on Weblogs and Social Media. 2010:291 - 294.
  • 6Shuai X, Liu X, Bolleu J. Improving News Ranking by Community Tweets [ C]. In : Proceedings of the 21 st International Conference Companion on World Wide Web (WWW' 12), Lyon, France. New York: ACM, 2012:1227 - 1232.
  • 7Salton G, Wong A, Yang C S. A Vector Space Model for Automat- ic Indexing[ J ]. Communications of the ACM, 1975, 18 ( 11 ) :613 - 620.
  • 8Lv Y, Zhai C. Positional Language Model for Information Retrieval [ C ]. In : Proceedings of the 32nd International ACM SIGIR Confer- ence on Research and Development in Information Retrieval ( SIGIR' 09). New York : ACM, 2009 : 299 - 306.
  • 9Weng J, Lira E P, Jiang J, et at. TwitterRartk: Finding Topic - sensitive Influential Twitters [ C ]. In : Proceedings of the 3 rd ACM International Conference on Web Search and Data Mining. 2010: 261 - 270.
  • 10Yamaguchi Y, Takahashi T, Amagasa T, et al. TURank: Twitter User Ranking Based on User - Tweet Graph Analysis [ C ]. In : Proceedings of Web Information Systems Engineering (WISE 2010 ). Berlin, Heidelberg: Spring - Verlag, 2010:240 - 253.

二级参考文献35

  • 1王丽.虚拟社群中意见领袖的传播角色[J].新闻界,2006(3):50-51. 被引量:34
  • 2PAGE L, BRIN S, MOTWANI R, et al. The PageRank citation ranking: bringing order to the Web[ R]. Santa Clara: Stanford Info-Lab, 1999.
  • 3BOLDI P, SANTINI M, VIGNA S. PageRank as a function of the damping factor[ C]// Proceedings of the 14th International Conference on World Wide Web. New York: ACM, 2005:557 -566.
  • 4CHEBOLU P, MELSTED P. PageRank and the random surfer model [ C]// Proceedings of the 19th Annual ACM-SIAM Symposium on Discrete Algorithms. Philadelphia: Society for Industrial and Applied Mathematics, 2008:1010 - 1018.
  • 5GANTZ F. The diverse and exploding digital universe[ R/OL]. [ 2012 - 03 - 16 ]. http://www. emc. com/collateral/analyst-reports/diverse-exploding-digital-universe.pdf.
  • 6GROPP W, LUSK E, SKJELLUM A. Using MPI portable parallel programming with the message-passing interface[M]. Cambridge: MIT Press, 1999.
  • 7DEAN J, GHEMAWAT S. MapReduce: simplified data processing on large clusters[ C]//Sixth Symposium on Operating System Design and Implementation. Berkeley: USENIX Association, 2004:137 - 150.
  • 8NARLIKAR G J, BLELLOCH G E. Pthreads for dynamic and irregular parallelism[ C]// Proceedings of Supercomputing 98: High Performance Networking and Computing. Washington, DC: IEEE Computer Society, 1998:31 -31.
  • 9CLARK D. OpenMP: a parallel standard for the masses[ J]. Transactions on Concurrency, 1998, 6(1) : 10 - 12.
  • 10DAGUM L, MENON R. OpenMP: an induStry standard API for shared-memory programming [ J]. Transactions on Computational Science & Engineering, 1998, 5 (1) : 46 - 55.

共引文献12

同被引文献19

  • 1O’Connor L G, Dillingham L L. Personal Experience as Social Capital in Online Investor Forums[J]. Library & Information Science Research, 2014, 36(1): 27-35.
  • 2Drushel B E.HIV/AIDS, Social Capital, and Online Social Networks[J]. Journal of Homosexuality, 2013, 60(8): 1230-1249.
  • 3Lin N.Social Capital: A Theory of Social Structure and Action [M]. Cambridge University Press, 2002.
  • 4Subbian K, Sharma D, Wen Z, et al.Finding Influencers in Networks Using Social Capital [C]. In: Proceedings of the 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining.2013: 25-28.
  • 5Zhu Z, Su J, Kong L.Measuring Influence in Online Social Network Based on the User-Content Bipartite Graph[J]. Computers in Human Behavior, 2015, 52: 184-189.
  • 6Ding Z, Wang H, Guo L, et al.Finding Influential Users and Popular Contents on Twitter [C]. In: Proceedings of the 16th International Conference on Web Information System Engineering, Miami, FL, USA. Springer International Publishing, 2015: 267-275.
  • 7Tang B, Lu T, Gu H, et al.Measuring Domain-Specific User Influence in Microblogs: An Actor-Network Theory Based Approach [C]. In: Proceedings of the 19th International Conference on Computer Supported Cooperative Work in Design. IEEE, 2015: 314-319.
  • 8Montangero M, Furini M.TRank: Ranking Twitter Users According to Specific Topics [C]. In: Proceedings of the 12th Conference on Consumer Communications and Networking, Las Vegas, NV, USA. IEEE, 2015: 767-772.
  • 9Tarokh M J, Arian H S, Speily O R B. Discovering Influential Users in Social Media to Enhance Effective Advertisement[J]. Advances in Computer Science: An International Journal, 2015, 4(5): 23-28.
  • 10Liu N, Li L, Xu G, et al.Identifying Domain-Dependent Influential Microblog Users: A Post-Feature Based Approach [C]. In: Proceedings of the 28th AAAI Conference on Artificial Intelligence. AAAI, 2014: 3122-3123.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部