期刊文献+

颜色的模糊识别方法及其在图像检索中的应用 被引量:2

Fuzzy-based color recognition and its application in image retrieval
下载PDF
导出
摘要 基于内容的图像检索(Content-based Image Retrieval,CBIR)以其极高的理论与应用价值成为了图像处理领域的研究热点。提取和匹配图像特征是CBIR的主要手段。然而提取图像的有效特征是极其困难的。利用HSV颜色空间特性以及人类对颜色的感知规律,提出一种颜色识别方法。应用此方法对图像的像素进行一种保持结构的分类,并在类内提取结构特征。图像的特征匹配将在同类像素集合间进行,降低了图像特征提取与匹配的复杂性。实验表明,提出的图像检索方法有良好的效果。 Content-based Image Retrieva(lCBIR)has become a hot research field of image processing.Features extraction and matching of image are the primary means of CBIR.However,it is extremely difficult to extract effective characteristics.This paper combines the HSV color space's characteristics with laws of human perception of color,to propose a color recognition method.Applying this method,pixels in image are divided into several classes which keep the structure in the original image.Structure feature extraction is implemented in each class.Image feature matching is done between the corresponding classes in different images.This method reduces the complexity of the image features extraction and matching.The experiments show that the proposed image retrieval method has good results.
出处 《计算机工程与应用》 CSCD 2013年第18期138-141,共4页 Computer Engineering and Applications
基金 国家自然科学基金(No.10771043)
关键词 图像检索 模糊集 颜色识别 特征提取 image retrieval fuzzy sets color recognition feature extraction
  • 相关文献

参考文献7

  • 1Konstantinidis K,Gasteratos A,Andreadis I.Image retrieval based on fuzzy color histogram processing[J].Optics Communications,2005,248:375-386.
  • 2Afsari F,Eslami E.Color image retrieval using intuitionistic fuzzy sets[C]//2010 6th Iranian Conference on Machine Vision and Image Processing,IsfahanIran,2010:96-102.
  • 3Martínez J C,Medina J M.Retrieving images in fuzzy object relational databases using dominant color descriptors[J].Fuzzy Sets and Systems,2007,158:312-324.
  • 4Venetsanopoulos A N,Androutsos D.Efficient indexing and retrieval of colour image data using a vector-based approach[D].Toronto,Ont.,Canada:University of Toronto,1999.
  • 5Phan R,Androutsos D.Content-based retrieval of logo and trademarks in unconstrained color image databases using color edge gradient cooccurrence histograms[J].Computer Vision and Image Understanding,2010,114:66-84.
  • 6齐文斌,毛秉毅.主色调颜色特征的图像检索与分类[J].计算机工程与应用,2011,47(24):191-192. 被引量:6
  • 7黄春木,周利莉.密度分布特征及其在二值图像检索中的应用[J].中国图象图形学报,2008,13(2):307-311. 被引量:8

二级参考文献12

  • 1Kankanhalli M S, Mehtre B M, Wu J K.Cluster based color matching for image retrieval[J].Pattem Recognition, 1996,29(4): 701-709.
  • 2刘相滨 邹北骥.一种新的颜色聚类算法及其图像检索.计算机工程与应用,2002,30(2):32-36.
  • 3Chen Y X, Wang J Z. A region-based fuzzy feature matching approach to content-based imageretrieval[ J]. IEEE. Transactions on Pattern Analysis and Machine Intelligence, 2002, 24 (9) : 1252-1267.
  • 4Wang J Z. Pathfinder: Multi-resolution region-based searching of pathology image using IRM [ A ]. In: Proceedings/AMIA Annual Symposium[ C ] , Los Angeles, CA, USA, 2000 : 883-887.
  • 5Jain A K, Vailay A. Shape-based retrieval: A case study with trademark image database [ J ]. Pattern Recognition, 1998, 31 (9) : 1369-1390.
  • 6Hu M K. Visual pattern recognition by moment invariants[ J]. IRE Transactions on Information Theory, 1962, IT-8:179-187.
  • 7Liu H, Feng S, Zha H, Document image retrieval based on density distribution feature and key block feature[ A ]. In: Proceedings of 8th International Conference on Document Analysis and Recognition[ C ], Seoul, Korea, 2005 : 1040-1044.
  • 8田小忱,杨东,杜春华.综合颜色和Contourlet直方图的图像检索方法[J].计算机工程,2010,36(1):224-226. 被引量:20
  • 9杨芳宇,王向阳.一种基于边缘综合特征的彩色图像检索算法[J].计算机科学,2010,37(2):256-260. 被引量:12
  • 10李向阳,鲁东明,潘云鹤.基于色彩的图像数据库检索方法的研究[J].计算机研究与发展,1999,36(3):359-363. 被引量:37

共引文献12

同被引文献19

  • 1王守觉,曲延锋,李卫军,覃鸿.基于仿生模式识别与传统模式识别的人脸识别效果比较研究[J].电子学报,2004,32(7):1057-1061. 被引量:46
  • 2冯建强,刘文波,于盛林.基于灰度积分投影的人眼定位[J].计算机仿真,2005,22(4):75-76. 被引量:49
  • 3董光波,谢桂海,孙增圻.基于DSP和小波分析技术的实时噪声消除系统[J].计算机工程,2006,32(4):247-249. 被引量:4
  • 4杜干,朱雯君.基于局部奇异值分解和模糊决策的人脸识别方法[J].中国图象图形学报,2006,11(10):1456-1459. 被引量:20
  • 5Andrews H, Hunt B. Digital image restoration[M]. Upper Saddle River, NJ, USA: Prentice Hall, 1977.
  • 6Levin A, Weiss Y, Durand F, et al. Efficient marginal likelihood optimization in blind deconvolution[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ, USA: IEEE, 2011: 2657-2664.
  • 7Tikhonov A N, Arsenin V Y. Solutions of Ill-posed problems[M]//Mathematics of Computation. Washington, USA: V H Winston & Sons, 1997.
  • 8Nishiyama M, Hadid A, Takeshima H, et al. Facial deblur inference using subspace analysis for recognition of blurred faces[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(4): 838-845.
  • 9Hamm J, Lee D D. Grassmann discriminant analysis: A unifying view on subspace-based learning[C]//Proceedings of the International Conference on Machine Learning. Piscataway, NJ, USA: IEEE, 2008: 376-383.
  • 10Sim T, Baker S, Bsat M. The CMU pose, illumination, and expression database[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(12): 1615-1618.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部