期刊文献+

基于UDCT系数的改进HMT和在图像去噪中应用

Improvement of HMT based on uniform discrete curvelet coefficients and application in image denoising
下载PDF
导出
摘要 通过对均匀离散曲波变换(Uniform Discrete Curvelet Transform,UDCT)系数的统计特性研究,同时对系数相关性度量指标互信息量的分析,最终选择隐马尔可夫树模型对其系数建模,且用EM算法训练序列;针对训练时间过长问题,通过分析系数的衰减性和尺度间系数延续性,提出一种新的对算法参数初值的方差和状态转移矩阵的优化方法,实验结果证明,在采用峰值信噪比和相似度作为图像去噪效果的度量时,同等条件下文中提出的算法比Wavelet HMT、Contourlet HMT、UDCT HMT算法有较好的实时性和去噪效果。 Based on the statistical properties of coefficients of the Uniform Discrete Curvelet Transform(UDCT),and the analysis of correlation metric mutual information about the coefficients,this paper chooses the Hidden Markov Tree to model the coefficients finally and trains the sequence with the EM algorithm.With amount of time consuming,an optimization EM algorithm based on HMT of UDCT coefficients is presented;it further optimizes the algorithm by defining the variance and state transition matrix based on the attenuation of coefficients and continuity between the scales.Experimental results show that,in the use of similarity and Peak Signal to Noise Ratio effect as the measurement of image de-noising,under the same conditions,the algorithm proposed has better real-time and de-noising effect than the Wavelet HMT,Contourlet HMT,UDCT HMT algorithm.
出处 《计算机工程与应用》 CSCD 2013年第18期195-199,231,共6页 Computer Engineering and Applications
基金 安徽省2009年度自然科学基金资助(No.090412041)
关键词 均匀离散曲波变换 互信息 隐马尔可夫树模型(HMT) 最大期望(EM)算法 图像去噪 Uniform Discrete Curvelet Transform(UDCT) mutual information Hidden Markov Tree mode(lHMT) ExpectationMaximization(EM)algorithm image denoising
  • 相关文献

参考文献12

  • 1刘仁金,高远飙,郝祥根.文本图像页面分割算法研究[J].中国科学技术大学学报,2010,40(5):500-504. 被引量:6
  • 2汪一休.一种交互式图像分割的修正优化方法[J].中国科学技术大学学报,2010,40(2):129-132. 被引量:3
  • 3Candes E J,Donoho D L,Ying L.Fast discrete curvelet transform[J].Multiscale Modeling and Simulation,2006,5(3):861-899.
  • 4Do M N,Vetterli M.The contourlet transform:an effect directional multi-resolution image representation[J].IEEE Trans on Image Processing,2005,14:2091-2106.
  • 5Nguyen T T,Chauris H.Uniform discrete curvelet transform[J].IEEE Transactions on Signal Processing,2010,58(7):3618-3633.
  • 6Crouse M,Nowak R,Baraniuk R.Wavelet-based statistical signal processing using hidden Markov models[J].IEEE Trans on Signal Processing,1998,46:886-902.
  • 7Po D D Y,Do M N.Directional multi-scale modeling of images using the contourlet transform[J].IEEE Trans on Image Processing,2006,15:1610-1620.
  • 8Moddemeijer R.On estimation of entropy and mutual information of continuous distributions[J].Signal Processing,1989,16(3):233-246.
  • 9Liu J,Moulin P.Information-theoretic analysis of inter-scale dependencies between image wavelet coefficients[J].IEEE Trans on Image Processing,2001,10:1647-1658.
  • 10Alecu A,Munteanu A,Pizurical A.Analysis of the statistical dependencies in the curvelet domain and applications in image compression[C]//Lecture Notes in Computer Science,2007,4678:1061-1071.

二级参考文献20

  • 1王加俊,黄贤武,郭玮玮,仲兴荣.文本页面图像的图文分割与分类算法[J].中国图象图形学报(A辑),2004,9(5):571-577. 被引量:4
  • 2Boykov Y, Jolly M P. Interactive graph cuts for optimal boundary & region segmentation of objects in n-d images[C]// Proceedings of the 8th International Conference on Computer Vision. Vancouver, Canada: IEEE Press, 2001, 1: 105-112.
  • 3Kwatra V, Schodl A, Essa I, et al. Graphcut textures: Image and video synthesis using graph cuts [J]. ACM Transactions on Graphics, 2003, 22(3): 277-286.
  • 4Rother C, Kolmogorov V, Blake A. Grabcut: interactive foreground extraction using iterated graph cuts[J].ACM Transactions on Graphics, 2004, 23 (3): 309- 314.
  • 5Vezhnevets V, Konouchine V. "GrowCut" : interactive multi-label N-D image segmentation by cellular automata[C]// Proceedings of the 15th International Conference on Computer Graphics and Applications. Novosibirsk Akademgorodok, Russia, 2005: 150-156.
  • 6Yatziv L, Sapiro G. Fast image and video colorization using chrominance blending[J].IEEE Transactions on Image Processing, 2006, 15(5): 1 120-1 129.
  • 7Protiere A, Sapiro G. Interactive image segmentation via adaptive weighted distances[J].IEEE Transaction on Image Processing, 2007, 16(4): 1 046-1 057.
  • 8Boykov Y, Kolmogorov V. An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(9):1 124-1 137.
  • 9[1]Crouse M S,Nowak R D,Baraniuk R G. Wavelet-Based Statistical Signal Processing Using Hidden Markov Models. IEEE Trans. on Signal Processing, 1998, 46(4): 886~ 902
  • 10[2]Dempster A P,Laird N M,Rubin D B. Maximum Likelihood from Incomplete Data via the EM Algorithm. Journal of the Royal Statistical Society, Series B, 1977,39:1 ~ 38

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部