期刊文献+

模拟跨导滤波器多目标并行进化的设计

Multi-objective parallel evolutionary design of analog transconductance filters
下载PDF
导出
摘要 以往模拟滤波器的设计,需要经过人工多次修改、计算和调试。提出一种模拟跨导滤波器的硬件进化结构及多目标并行进化的设计方法。应用一种基于渗透原理迁移策略的多目标并行遗传算法,实现跨导滤波器的参数优化。对多目标并行遗传算法的遗传操作进行了改进,构造了适合滤波器参数进化的多目标适应度函数。在高Q值的跨导滤波器的设计中,采用级联法构成的四阶带通跨导滤波器能够满足其在阻带、通带以及过渡带方面的性能要求,对其实效性进行了仿真和验证,进化的参数数值与理论结果符合得非常好。 An analog filter's design used to need modification,computation and debugging in many times by manual work.An evolutionary hardware structure and multi-objective parallel evolvable design method for an analogue transconductance filter is presented.A parallel genetic algorithm with migration scheme based on penetration theory is applied,and parameters optimization of the transconductance filter is realized.Genetic operations to multi-objective parallel genetic algorithm are improved,and a multi-object fitness function for the filter parameter has been built.In the course of high Q value transconductance filter designing,structure of four-order bandpass transconductance filter is built by cascade method,which is able to meet performance request in its stop-band,passing band,transition band,and the practicality has been simulated and verified.Values of evolutionary parameters are in line with theoretical values exceedingly.
作者 张学华 李尧
出处 《计算机工程与应用》 CSCD 2013年第18期204-207,222,共5页 Computer Engineering and Applications
基金 国家高技术研究发展计划(863)(No.2002AA632080)
关键词 进化硬件 跨导滤波器 多目标并行遗传算法 进化 仿真 evolvable hardware transconductance filter multi-object parallel genetic algorithm evolve simulate
  • 相关文献

参考文献15

  • 1Raichman N,Segev R,Ben-Jacob E.Evolvable hardware:genetic search in a physical realm[J].Physica A,2003,326:265-285.
  • 2Chen Jongchen,Chen Ruey-Dong.Toward evolvable neuromolecular hardware:a hardware design for a multilevel artificial brain with digital circuits[J].Neurocomputing,2002,42:9-34.
  • 3Paola V D,Marijuan P C,Lahoz-Beltra R.Learning and evolution in bacterial taxis:an operational amplifier circuit modeling the computational dynamics of the prokaryotic“two component systems”protein network[J].Bio System,2004,74:29-49.
  • 4王小平 曹立明.遗传算法-理论,应用与软件实现[M].西安:西安交通大学出版社,2001..
  • 5Thompson A,Layzell P,Zebulum R S.Explorations in design space:unconventional electronics design through artificial evolution[J].IEEE Transactions on Evolutionary Computation,1999,3(3):167-196.
  • 6赵曙光,杨万海,刘贵喜.基于进化的电路自动设计方法[J].电路与系统学报,2002,7(1):72-78. 被引量:12
  • 7李慧贤,程春田.一种基于并行遗传算法的网格资源分配方法[J].计算机工程,2006,32(5):175-177. 被引量:1
  • 8曾国荪,丁春玲.并行遗传算法分析[J].计算机工程,2001,27(9):53-55. 被引量:26
  • 9张志增,李仲奎,程丽娟.基于主从式并行遗传算法的岩土力学参数反分析方法[J].工程力学,2010,27(10):21-26. 被引量:13
  • 10Lee Y H,Chen C.A modified genetic algorithm for task scheduling in multiprocessor systems[D].Taiwan:National Chiao Tung University,2003.

二级参考文献62

  • 1刘晓平,安竹林,郑利平.基于MPI的主从式并行遗传算法框架[J].系统仿真学报,2004,16(9):1938-1940. 被引量:26
  • 2乔双,李尧,王洪刚.进化型模拟滤波器的并行进化方法[J].电子器件,2004,27(3):456-458. 被引量:8
  • 3王开健,刘西拉,顾雷.基于MPI机群环境下的广义逆力法并行化初探[J].岩石力学与工程学报,2005,24(1):57-65. 被引量:3
  • 4徐高巍,白世伟,贺怀建.岩石力学参数数据库系统的开发和研究[J].岩土力学,2005,26(6):1005-1008. 被引量:8
  • 5陈国良 王煦法 等.遗传算法及其应用[M].北京:人民邮电出版社,1999,5.433.
  • 6Holland J H. Adaptation in natural and artificial system [M]. Michigan: University of Michigan Press, 1975.
  • 7Itasca Consulting Group Inc. Fast Lagrangian analysis of continua in 3 dimensions [M]. Minnesota: Itasca Consulting Group Inc., 1997.
  • 8Nadav Raichman,Ronen Segev,Eshel Ben-Jacob.Evolvable Hardware:Genetic Search in a Physical Realm[J].Physica A,2003,326:265-285.
  • 9Chen Jong-Chen,Chen Ruey-Dong.Toward Evolvable Neuromolecular Hardware:a Hardware Design for a multilevel Artificial Brain with Digital Circuits[J].Neurocomputing,2002,42:9-34.
  • 10Vieri Di Paola,Pedro C.Marijuan,Rafael Lahoz-Beltra.Learning and Evolution in Bacterial taxis:an Operational Amplifier Circuit Modeling the Computational Dynamics of the Prokaryotic 'Two Component Systents' Protein network[J].Bio System,2004,74:29-49.

共引文献68

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部