期刊文献+

Toeplitz含噪语音端点鲁棒检测

Voice activity robust detection of noisy speech in Toeplitz. C
下载PDF
导出
摘要 针对在低信噪比条件下语音端点检测问题,提出了一种基于Toeplitz最大特征值的去噪语音端点检测方法。该方法用语带频谱自相关序列构造一个对称Toeplitz矩阵,利用该矩阵最大特征值的信息量对语音信号进行双门限端点检测。新算法经过实验,能够有效地区分语音和噪声,在不同的低噪声环境条件下具有良好的鲁棒性。与新近的信号递归度分析方法比较,准确率较高。该算法计算代价小,实时性好,简洁易实现。 A Toeplitz de-noising method using the maximum eigenvalue is proposed for the voice activity detection at low SNR scenarios.This method uses the self-correlation sequence of speech bandwidth spectrum to construct a new symmetric Toeplitz matrix and to compute the largest eigenvalue,and the double decision thresholds in the largest eigenvalue are applied in the decision framewok.Simulation results show that the presented algorithm is more effective in distinguishing speech from noise and has better robustness under various noisy environments.Compared with novel method of recurrence rate analysis,this algorithm shows lower wrong decision rate.The algorithm is of low computational complexity and is simple in real-time realization.
出处 《计算机工程与应用》 CSCD 2013年第18期217-222,共6页 Computer Engineering and Applications
关键词 语音端点检测 语带频谱 最大特征值 鲁棒性 voice activity detection speech bandwidth spectrum maximum eigenvalue robustness
  • 相关文献

参考文献17

  • 1Raj B,Singh R.Classifier-based non-linear projection for adaptive endpointing of continuous speech[J].Computer Speech and Language,2003,17:5-26.
  • 2Tanyer S G,Ozer H.Voice activity detection in nonstationary noise[J].IEEE Transactions on Speech and Audio Processing,2000,8(4):478-482.
  • 3Karray L,Martin A.Towards improving speech detection robustness for speech recognition in adverse conditions[J].Speech Communication,2003,40:261-276.
  • 4Kuroiwa S,Naito M,Yamamoto S,et al.Robust speech detection method for telephone speech recognition system[J].Speech Communication,1999,27:135-148.
  • 5Ramirez J,Segura J C,Benitez C,et al.Efficient voice activity detection algorithms using long-term speech information[J].Speech Communication,2004,42:271-287.
  • 6Ramirze J,Segura J C,Benitez C,et al.An efective subband OSF-based VAD with noise reduction for robust speech recognition[J].IEEE Transactions on Speech and Audio Processing,2005,13(6):1119-1129.
  • 7Nemer E,Goubran R,Mahmoud S.Robust voice activity detection using higher-order statistics in the LPC residual domain[J].IEEE Transactions on Speech and Audio Processing,2001,9(3):217-231.
  • 8Shen J,Hung J,Lee L.Robust entropy-based endpoint detection for speech recognition in noisy environments[C]//Proc of International Conference on Spoken Language Processing,Sydney,Australia,1998:232-238.
  • 9Ephraim Y,van Trees H L.A signal subspace approach for speech enhancement[J].IEEE Trans on Speech Audio Processing,1995,3(4):251-266.
  • 10Klein M,Kabal P.Signal subspace speech enhancement with perceptual post filtering[C]//IEEE-ICASSP’02,Orlando,Florida,USA,2002:537-540.

二级参考文献37

  • 1吕勇,徐金梧,李友荣.递归图和近似熵在设备故障信号复杂度分析中的应用[J].机械强度,2006,28(3):317-321. 被引量:20
  • 2闫润强,朱贻盛.基于信号递归度分析的语音端点检测方法[J].通信学报,2007,28(1):35-39. 被引量:8
  • 3李金宝,屈百达,徐宝国,周小祥.基于自适应子带功率谱熵的语音端点检测算法[J].计算机工程与应用,2007,43(12):57-58. 被引量:5
  • 4Marzinzik M, Kollmeier B.Speech pause detection for noise spectrum estimation by tracking power envelope dynamics[J]. IEEE Trans on Speech and Audio Processing, 2002, 10: 109-118.
  • 5Junqua J C.Robustness and cooperative multi-model man machine communication application[C]//Proc Second Venaco Workshop and ESCA ETRW, 1991.
  • 6Huang N E, Shen Z, Long S R,et al.The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-station time series analysis[C]//Proceeding of the Royal Society of London, 1998 : 903-995.
  • 7Marwan N, Thiel M, Nowaczyk N R.Cross recurrence plot based synchronization of time series[J].Nonlinear Proc Geophys,2002,9:325-331.
  • 8Zbilut J P, Webber J, Charles L.Embeddings and delays as derived from quantification of recurrence plots[J].Physics Letters A, 1992,171(1) : 199-203.
  • 9Boudraa A O,Cexus J C,Saidi Z.EMD-based signal noise reduction[J].International Journal of Signal Processing,2004, 1 (1):33-37.
  • 10Karray L,Martin A.Towards improving speech detection robustness for speech recognition in adverse conditions[J].Speech Communication, 2003,40: 261-276.

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部