期刊文献+

量子元胞自动机干支型交叉线及应用

A Quantum-Dot Cellular Automata Main-Branch Wire Crossing and Its Application
下载PDF
导出
摘要 量子元胞自动机(QCA)耦合功能阵列是一种二维的纳米尺度计算范式,可靠性较低的共面交叉线结构是QCA电路交叉互连时的薄弱环节。信号分布网络是实现交叉线功能的一种新方法,但面临元胞随机翻转干扰问题。为解决该问题,首先分析了QCA基本器件逻辑功能实现机理,并提出了一种干支型交叉线。该器件可以在两路信号相遇时选通干路信号屏蔽支路信号,从而达到抑制干扰信号的目的。通过仿真实验得出了其鲁棒功能结构和时钟分配原则。然后利用干支型交叉线改进了异或门设计,仿真结果进一步验证了其逻辑功能。 The coupling function array of the quantum-dot cellular automata (QCA) is a two-di mensional computing paradigm in the nanometer scale. Thus the lowly reliable cop anar wire crossing is a shortcoming of QCA circuit at crossing and interconnection. The signal distribution network is a new method for implementing the functionality of wire crossing, but meets the inter- ference caused by random overturning of the cells. To overcome this problem, the functional mechanism of QCA logic devices was analyzed, and a main-branch wire crossing was proposed. This proposed device can pass the main-line signal, while decline the branch-line one when they meet at the same time, thereby it can get rid of the disturbing signals. Then the robustly func- tional structure and the allocation principle of the clock are obtained with the simulation experi- ments. Furthermore, the design of XOR gate was modified by the main-branch wire crossing. The simulation results further demonstrate its logical function.
出处 《微纳电子技术》 CAS 北大核心 2013年第9期541-545,共5页 Micronanoelectronic Technology
基金 国家自然科学基金资助项目(61172043) 陕西省自然科学基础研究计划重点项目(2011JZ015)
关键词 量子元胞自动机(QCA) 干支型交叉线 信号分布网络 随机翻转 异或门 quantum-dot cellular automata (QCA) main-branch wire crossing signal distribu- tion network random overturning XOR gate
  • 相关文献

参考文献10

  • 1LENT C S. TOUGAW P D. Lines of interacting quantum-dot cells: a binary wire[J].J Appl Phys , 1993. 74 (10): 6227- 6233.
  • 2TOUGA W P D. LENT C S. Logic devices implemented using quantum cellular automata[J].J Appl Phys , 1994. 75 (3): 1818 - 1825.
  • 3YANG X K. CAl L. ZHAO X H. et al. Design and simula?tion of sequential circuits in quantum-dot cellular automata: falling edge-triggered flip-flop and counter study[J]. Micro?electronJ. 2010. 41 (I): 56 - 63.
  • 4LU L. LlU W Q. O'NEILL M. et al. QCA systolic array de?sign[J]. IEEE Trans Compur , 2013. 62 (3): 548 - 560.
  • 5PUDI V. SRIDHARAN K. Efficient design of a hybrid adder in quantum-dot cellular automata[J]. IEEE Trans Very Large Scale Inregr (VLSI) Sysr , 2011. 19 (9): 1535 - 1548.
  • 6CHUNG WJ. SMITH B. LIM S K. QCA physical design with crossing minimization[CJ / / Proceedings of the 5'h IEEE Conference Nanotechnology. Nagoya.Japan. 2005: 108-111.
  • 7SMITH B. LIM S K. QCA chanel routing with wire crossing minimization[CJ / / Proceedings of Great Lakes Symposium on VLSI. New York. USA. 2005: 217-220.
  • 8BHANJA S. OTTAVI M. LOMBARDI F. et al. Novel de?signs for thermally robust coplanar crossing in QCA[CJ / / Proceedings of Conference on Design. Automation and Test. Munich. Germany. 2006: 786 -791.
  • 9TOUGAW D. KHATUM M. A scalable signal distribution network for quantum-dot cellular automata[J]. IEEE Trans Nanotechnol , 2013. 12 (2): 215 - 224.
  • 10杨晓阔,蔡理,李政操,陈祥叶.量子元胞自动机器件和电路的研究进展[J].微纳电子技术,2011,48(12):754-760. 被引量:3

二级参考文献39

  • 1International technology roadmap for semiconductors 2009 FEB/OLd. (2010-01 - 20) [2011-09- 07]. http://public, itrs. net/ Files/2009ITRS/Home2009. html.
  • 2LENT C S, TOUGAW P D. A device architecture for compu- ting with quantum dots [J]. Proceedings of the IEEE, 1997, 85 (4) : 541 - 557.
  • 3ORLOV A O, AMLANI I, BERNSTEIN G H, et al. Realiza- tion of a functional cell for quantum-dot cellular automata [J]. Science, 1997, 277 (5328) : 928 - 930.
  • 4IMRE A, CSABA G, JI L L, et al. Majority logic gate for magnetic quantum-dot cellular automata [J]. Science, 2006, 311 (5758): 205-208.
  • 5SNIDER G L, ORLOV A O, AMLANI I, et al. Quantum-dot cellular automata.- line and majority gate logic [J]. Japanese Journal of Applied Physics, 1999, 38 (12) : 7227 - 7229.
  • 6WALUS K, JULLIEN G A. Design tools for an emerging SoC technology: quantum dot cellular automata [J]. Proceedings of the IEEE, 2006, 94 (6): 1225- 1244.
  • 7NIEMIER M, DINGLER A, HU X S. Bridging the gap be- tween nanomagnetic devices and circuits [C] //Proceedings of the 26^th IEEE Internationai Conference on Computer Design. Lake Tahoe, Canada, 2008: 506-513.
  • 8HENNESSY K, LENT C S. Clocking of molecular quantum- dot cellular automata [J]. Journal of Vacuum Science and Technology: B, 2001, 19 (5): 1752-1755.
  • 9VANKAMAMIDI V, OTTAVI M, LOMBARDI F. Two-di mensional schemes for clocking/timing of QCA circuits [J]. IEEE Transactions on Computer-aided Design of Integrated Circuits and Systems, 2008, 27 (1): 34-44.
  • 10FROST S E, DYSART T J, KOGGE P M, et al. Carbon nanotubes for quantum-dot cellular automata clocking [C] // Proceedings of the 4th IEEE Conference on Nanotechnology. Munich, Germany, 2004: 171- 173.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部