期刊文献+

有机碳源对铜绿假单胞菌还原Cr(Ⅵ)的影响 被引量:2

Effect of organic carbon source on chromate reduction by Pseudomonas aeruginosa
原文传递
导出
摘要 采用批式实验,研究了2种有机碳源苹果酸和葡萄糖对铜绿假单胞菌还原Cr(Ⅵ)效果的影响,并从pH、氧化还原电位和细胞生长量等方面对2种有机碳源的影响差异及其原因进行了分析、探讨。结果表明,葡萄糖和苹果酸均能促进菌株对Cr(Ⅵ)的还原,苹果酸的促进作用比葡萄糖更加显著,加入葡萄糖和苹果酸时Cr(Ⅵ)还原率分别提高了16.34%和25.72%。加入苹果酸时的细胞生长量明显高于加入葡萄糖时的细胞生长量。添加葡萄糖时还原过程中培养基pH值下降,氧化还原电位上升,而添加苹果酸其变化趋势相反。添加了葡萄糖的培养基代谢液(无菌体细胞)对Cr(Ⅵ)具有较好的还原作用,但添加了苹果酸的培养基代谢液(无菌体细胞)不能还原Cr(Ⅵ)。 Batch experiments were carried out to investigate the effect of two organic carbon sources,malate and glucose on Cr(Ⅵ) reduction by Pseudomonas aeruginosa.The pH,redox potential and cell growth during Cr(Ⅵ) reduction were measured to analyze the difference in the effect of these two organic carbon sources.The results demonstrated that both of malate and glucose promoted bacterial Cr(Ⅵ) reduction and malate was better than glucose.The reduction efficiency increased with supplementation of glucose and malate by 16.34% and 25.72%,respectively.The cell growth was obviously higher with addition of malate than addition of glucose.Addition of glucose resulted in the decrease of pH and increase of redox potential in culture medium,while the trend of pH and redox potential variation was opposite to that when malate was applied.Cr(Ⅵ) was reduced by liquid culture metabolite(LCM,without cells) when glucose was added in liquid medium,but Cr(Ⅵ) was not reduced by LCM(without cells) when malate was used.
出处 《环境工程学报》 CAS CSCD 北大核心 2013年第9期3657-3660,共4页 Chinese Journal of Environmental Engineering
基金 国家自然科学基金资助项目(51108167) 高等学校博士学科点专项科研基金资助项目(20100161120011) 湖南省自然科学基金资助项目(11JJB003) 中央高校基本科研业务费资助项目
关键词 Cr(Ⅵ)还原 铜绿假单胞菌 有机碳源 Cr(Ⅵ) reduction Pseudomonas aeruginosa organic carbon source
  • 相关文献

参考文献16

  • 1Xu W. , Liu Y. , Zeng G. , et al. Characterization of Cr ( VI ) resistance and reduction by Pseudomonas aeruginosa. Trans. Nonferrous Met. Soc. China, 2009, 19(5) : 1336- 1341.
  • 2Kathiravan M. N. , Rani R. K. , Karthick R. , et al. Mass transfer studies on the reduction of Cr( VI ) using calcium alginate immobilized Bacillus sp. in packed bed reactor. Bioresour. Technol. , 2010, 101(3) : 853-858.
  • 3Patra R. C. , Malik S. , Beer M. , et al. Molecular charac- terization of chromium ( VI ) reducing potential in Gram pos- itive bacteria isolated from contaminated sites. Soil Biol. Biochem. , 2010, 42(10): 1857-1863.
  • 4Desai C. , Jain K. , Madamwar D. Evaluation of In vitro Cr ( VI ) reduction potential in cytosolic extracts of three indig- enous Bacillus sp. isolated from Cr(VI) polluted industrial landfill. Bioresour. Technol. , 2008, 99(14): 6059-6069.
  • 5Desai C. , Jain K. , Madamwar D. Hexavalent chromate re- ductase activity in cytosolic fractions of Pseudomonas sp. G1DM21 isolated from Cr (VI) contaminated industrial landfill. Process Bioehem. , 2008, 43(7): 713-721.
  • 6Pal A. , Dutta S. , Paul A. K. Reduction of hexavalent chromium by cell free extract of Bacillus sphaericus AND 303 isolated from serpentine soil. Curr. Microbiol. , 2005, 51 (5) : 327-330.
  • 7Liu Y.G. , XuW. H. , ZengG. M., etal. Cr(VI) reduc- tion by Bacillus sp. isolated from chromium landfill. Process Biochem. , 2006, 41(9): 1981-1986.
  • 8Sanghi R. , Srivastava A. Long-term chromate reduction by immobilized fungus in continuous column. Chem. Eng. J. , 2010, 162(1) : 122-126.
  • 9Xu L. , Luo M. , Li W. , et al. Reduction of hexavalent chromium by Pannonibacter phragmiterus LSSE-09 stimula- ted with external electron donors under alkaline conditions. J. Hazard. Mater., 2011, 185(2-3): 1169-1176.
  • 10Philip L. , Iyengar L. , Vcnkobachar C. , et al. Cr( VI ) reduction by Bacillus coagulans isolated from contaminated soils. J. Environ. Eng., 1998, 124 (12): 1165-1170.

二级参考文献4

共引文献4

同被引文献25

  • 1狄军贞,江富,朱志涛,戴男男.玉米芯为碳源固定化硫酸盐还原菌污泥代谢特性[J].环境工程学报,2015,9(4):1687-1692. 被引量:11
  • 2夏金兰,申丽,何环,聂珍媛,傅金殿.游离和固定化Synechococcus sp.细胞对铬(Ⅵ)生物吸附性能的比较研究[J].中南大学学报(自然科学版),2006,37(2):241-246. 被引量:7
  • 3张瑛华,张书廷,汪群慧.有机废水厌氧发酵产酸的试验研究[J].中国给水排水,2007,23(3):64-66. 被引量:4
  • 4Cheju M. Hexavalent chromium reduction with zero-valent iron (ZVI) in aquatic systems. Water, Air, & Soil Pollution, 2011, 222(1-4) : 103-148.
  • 5Zongo I. , Leclerc J. P. , Maǐga H. A. , et al. Removal of hexavalent chromium from industrial wastewater by electrocoagulation: A comprehensive comparison of aluminium and iron electrodes. Separation and Purification Technology, 2009, 66(1) : 159-166.
  • 6Muthukrishnan M. , Guha B. K. Effect of pH on rejection of hexavalent chromium by nanofihration. Desalination, 2007, 219(1-3) : 171-178.
  • 7Unnithan M. R. , Viond V. P. , Anirudhan T. S. Synthesis, characterization, and application as a chromium ( Ⅵ ) adsorbent of amine-modified polyacrylamide-grafted coconut coir pith. Industrial Engineering Chemistry Research, 2004, 43 (9) : 2247-2255.
  • 8Tunali S. , Kiran I. , Akar T. Chromium( Ⅵ ) biosorption characteristics of Neurospora crassa funga! biomass. Minerals Engineering, 2005, 18(7) : 681-689.
  • 9Park D. , YunY. S. , ParkJ. M. Use of dead fungalbiomass for the detoxification of hexavalent chromium : Screening and kinetics. Process Biochemistry, 2005, 40 ( 7 ) : 2559 -2565.
  • 10Christl I. , Imseng M. , Tatti E. , et al. Aerobic reduction of chromium (Ⅵ) by Pseudomonas corrugata 28 : Influence of metabolism and fate of reduced chromium. Geomicrobiology Journal, 2012, 29(2) : 173-185.

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部