期刊文献+

基于最优分配的多目标滤波系统性能评估 被引量:3

Performance evaluation of multi-object filter system based on the optimal assignment
下载PDF
导出
摘要 针对现有多目标滤波性能评估方法中存在的目标源分配不合理问题,提出一种新的目标源最优分配方法。所提方法首先利用估计目标的协方差矩阵和标准椭球波门初步检测出虚假估计和漏检目标,然后利用最优分配法完成剩余估计目标和剩余源目标间的分配。由于采用马氏距离测度和标准椭球波门,使得目标源分配不受量纲选取的影响且与具体应用背景无关。在此基础上,推广了一种多目标误差距离测度对多目标滤波性能进行评估。实验分析和比较验证了所提方法的合理有效性。 A novel estimate-to-truth assignment algorithm based on the optimal assignment is proposed for performance evaluation of multi-object filter. The corresponding covariance matrices of the estimates are used to detect a part of false estimates and missing objects based on the standard elliptical gating technique. Then, the residual estimate and object set are assigned based on the optimal assignment. Since the Mahalanobis distance and the standard elliptical gating solution are used in the process of assignment, the novel assignment algorithm avoids scaling problems and it is unrelated with the concrete applications. To evaluate the multi-object filters, a multi-object miss-distance is generalized. Numerical analyses verify the validity of the proposed assignment algo- rithm and the defined measures are shown to be effective in capturing the accuracy of the multi-object filters.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2013年第9期1809-1814,共6页 Systems Engineering and Electronics
基金 国家自然科学基金(61101181)资助课题
关键词 多目标滤波 性能评估 最优分配 有限集统计学理论 multi-object filter performance evaluation optimal assignment finite set statistics (FISST)
  • 相关文献

参考文献12

  • 1Mahler R.Statistical multisource-multitarget information[M].Norwood,MA:Artech House,2007.
  • 2Morelande M R,Kreucher C M,Kastella K.A Bayesian approach to multiple target detection and tracking[J].IEEE Trans.on Signal Processing,2007,55(5):1589-1604.
  • 3Macagnano D,Abreu G.Adaptive gating for multitarget tracking with Gaussian mixture filters[J].IEEE Trans.on Signal Processing,2012,60(3):1533-1538.
  • 4Mahler R,Vo B T,Vo B N.Forward backward probability hypothesis density smoothing[J].IEEE Trans.on Aerospace and Electronic Systems,2012,48 (1):707-728.
  • 5Drummond O E,Fridling B E.Ambiguities in evaluating performance of multiple target tracking algorithms[C]//Proc.of the SPIE Signal and Data Processing of Small Targets,1992,1698:326-337.
  • 6Hoffman J R,Mahler R.Multitarget miss distance via optimal assignment[J].IEEE Trans.on Systems,Man,and Cybernetics-PartA:Systemsand Humans,2004,34 (3):327-336.
  • 7Schuhmacher D,Vo B T,Vo B N,A consistent metric for performance evaluation of multi object filters[J].IEEETrans.on Signal Processing,2008,56 (8):3447-3457.
  • 8Papadimitriou C H,Steiglitz K.Combinatorial optimization:algorithms and complexity[M].New York:Dover Publications,1998.
  • 9Coraluppi S,Carthel C.Topics in multiple-hypotheis tracking[EB/OL].[2012-07-14].http://ftp.rta.nato.int/public/PubFull-Text % 5.CRTO% 5CEN% 5CRTO-EN SET 157-2011 ///EN SET-157(2011)-04.pdf.
  • 10Vo B N,Ma W K.The Gaussian mixture probability hypothesis density filter[J].IEEE Trans.on Signal Processing,2006,54(11):4091-4104.

同被引文献41

  • 1艾廷华,帅赟,李精忠.基于形状相似性识别的空间查询[J].测绘学报,2009,38(4):356-362. 被引量:46
  • 2Blackman S.Popoli R. Design and analysis of modern tracking systems[M]. Norwood, MA: Artech House,1999.
  • 3Bar-Shalom Y, Li X R. Multitarget-muitisensor tracking: principles and techniques[M]. Storrsv C"I , YBS Publishing, 1995.
  • 4Bar-Shalom Y, Tse E. Tracking in a cluttered environment with probabilistic data association [J]. Automatica, 1975, 11 (5) : 451 - 460.
  • 5Fortmann T Ev Bar-Shalom Y ,Scheffe M. Sonar tracking of multiple targets using joint probabilistic data association[J]. IEEE Journal of Oceanic Engineering ,1983,8(3) :173 -184.
  • 6Westenberger A, Duraisamy B, Munz M. Impact of out-of-sequence measurements on the joint integrated probabilistic data association filter for vehicle safety systerns [C]// Proc. of the IEEE Intelligent Vehicles Symposium, 2012 :438 - 443.
  • 7Georgescu R. Willett P. The multiple model CPHD tracker[J]. IEEE Trans. on Signal Processing. 2012. 60( 4) : 1741 - 175l.
  • 8Oualil Y, Faubel F, Klakow D. A multiple hypothesis Gaussian mixture filter for acoustic source localization and tracking] CJ II Proc. of the International Workshop on Acoustic Echo and Noise Control CIWAENC) ,2012:1 - 4.
  • 9Sathyan T,Chin T],Arulampalam S. A multiple hypothesis tracker for multi target tracking with multiple simultaneous measurements[J]. IEEE Journal of Selected TOPics in Signal Processing.2013.7(3): 448 - 460.
  • 10Mahler R. Statistical multisource-multitarget information fusion[M]. Norwood. MA: Artech House.2007.

引证文献3

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部