期刊文献+

基于EKF的新混沌系统滤波方法 被引量:4

Filtering method of new chaotic system based on EKF
下载PDF
导出
摘要 提出一个新的混沌系统,研究其基本动力学特性。在混沌控制及其应用中,混沌系统的状态估计和滤波是重要的,但现有的滤波算法不能适应混沌的初值敏感性、不能长期预测,提出了一种基于扩展卡尔曼滤波(extended Kalman filter,EKF)的混沌系统参数估计和滤波方法。通过对新混沌系统进行数值仿真,结果表明,这是一种有效的滤波方法。 A new chaotic system is presented. Some basic dynamical properties are studied. The state esti adapt oneself to the characteristics of the chaos system, such as sensitivity to initial condition, long-term pre dictability. A filter applying to the chaos system is proposed based on chaos system state space theory and ex- tended Kalman filter (EKT) theory. Simulation results show that the proposed algorithm is an effective method to estimate the parameter of chaos systems and filter.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2013年第9期1830-1835,共6页 Systems Engineering and Electronics
基金 国家自然科学基金(51179157) 陕西省教育厅专项科研计划项目(10JK823 12JK0493) 西安邮电大学青年教师科研基金项目(ZL2013-20 ZL2013-21)资助课题
关键词 新混沌系统 动力学特性 扩展卡尔曼滤波 状态估计 new chaotic system dynamical property extended Kalman filter (EKF) state estimation
  • 相关文献

参考文献3

二级参考文献14

  • 1张晓丹,李志萍,张丽丽.一类基于奇异值分解的Lyapunov指数计算方法[J].北京科技大学学报,2005,27(3):371-374. 被引量:42
  • 2王发强,刘崇新.Liu混沌系统的混沌分析及电路实验的研究[J].物理学报,2006,55(10):5061-5069. 被引量:38
  • 3Lorenz E N 1963 J. Atmos. Sci. 20 130
  • 4Lorenz E N 1993 The Essence of Chaos (Washington: University of Washington Press)
  • 5Chen G R, Ueta T 1999 Int. J. Bifurcat. Chaos 9 1465
  • 6Celikovsky S, Chen G R 2002 Int. J. Bifurcat. Chaos 12 1789
  • 7Lu JH, Chen G R 2002 Int. J. Bifurcat. Chaos 12 659
  • 8Liu C X, Liu L, Liu K 2004 Chaos Soliton. Fract. 22 1031
  • 9Lu J, Chen G, Cheng D 2004 Int. J. Bifurcat. Chaos 14 1507
  • 10Elwakil A S, Kennedy M P 2000 IEEE Trans. Circuits Syst. I 47 76

共引文献65

同被引文献28

  • 1王发强,刘崇新.分数阶临界混沌系统及电路实验的研究[J].物理学报,2006,55(8):3922-3927. 被引量:55
  • 2徐茂格,宋耀良,刘力维.基于修正扩展卡尔曼滤波和粒子滤波的混沌信号检测与跟踪[J].南京理工大学学报,2007,31(4):514-517. 被引量:5
  • 3Chen Guanrong,Ueta T.Yet another chaotic attractor[J].International Journal of Bifurcation and Chaos in Applied Sciences and Engineering,1999,9(7):1465-1466.
  • 4Liu Chongxin,Liu Tao,Liu Ling,et al.A new chaotic attractor[J].Chaos,Solitons and Fractals,2004,22(5):1031-1038.
  • 5Pecora L M,Carroll T L.Synchronization in chaotic systems[J].Physical Review Letters,1990,64(8):821-825.
  • 6Wu Xiangjun,Li Shanzhi.Dynamics analysis and hybrid function projective synchronization of a new chaotic system[J].Nonlinear Dynamics,2012,69(4):1979-1994.
  • 7Cˇelikovsky S,Chen Guanrong.On the generalized Lorenz canonical form[J].Chaos,Solitons and Fractals,2005,26(5):1271-1276.
  • 8Huang Xiaoling,Ye Guodong.An efficient self-adaptive model for chaotic image encryption algorithm[J].Communications in Nonlinear Science and Numerical Simulation,2014,19(12):4094-4104.
  • 9Wei Zhouchao,Yang Qigui.Dynamical analysis of a new autonomous 3-D chaotic system only with stable equilibria[J].Nonlinear Analysis,2011,12(1):106-118.
  • 10Cai Guoliang,Huang Juanjuan.A new finance chaotic attractor[J].International Journal of Nonlinear Science,2007,3(3):213-220.

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部