期刊文献+

基于BP神经网络的动能杆毁伤指标预测模型 被引量:6

Damage indexes of KE-rod forecast model based on BP neural network
下载PDF
导出
摘要 动能杆侵彻靶板的毁伤效果评估是一个复杂的问题。由于动能杆的数量多,侵彻碰撞情况多达上千种,计算费力又耗时。针对这些问题,提出了一种评价毁伤效果的数学模型,建立了基于反向传播(back propagation,BP)神经网络的预测模型,给出了隐含层节点数的计算方法,并在网络节点作用函数和随误差的变化动态更改参数方面对BP神经网络进行了改进。最后对仿真结果进行了分析,结果表明,75%的神经网络预测值分布在±10%误差范围之内,86%的神经网络预测值分布在±20%误差范围之内,验证了预测模型的可靠性和有效性。 The assessment of damage effect for kinetic energy rod (KE-rod) penetration on targets is a com plex problem, and the computation is laborious and time-consuming because of a large number of KE rods and thousands of penetrations. Aiming at these problems, a mathematical model is put forward to evaluate the dam- age effect, the forecast model based on back propagation (BP) neural network is established, the calculative method of hidden layer nodes is given and the BP neural network is improved on the network function node and the dynamic changes of parameters with the error. The simulation results show that 75% of the predicted value based on neural network is distributed with ±10% error and 86%o of the predicted value based on neural net work is distributed with +20% error, which validates that the forecast model is reliability and validity.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2013年第9期1898-1902,共5页 Systems Engineering and Electronics
基金 航空科学基金(20120196006)资助课题
关键词 毁伤指数 动能杆 反向传播神经网络 侵彻 damage index kinetic energy rod back propagation (BP) neural network penetration
  • 相关文献

参考文献17

  • 1Bourget D,Baillargeon Y,Northrop S.Witness pack calibration for human vulnerability assessment[C]//Proc.of the 20th International Symposium on Ballistics (Ⅱ),2002:1270-1276.
  • 2Held M.Shaped charge steel equivalence[C]//Proc.of the 20th International Symposium on Ballistics (Ⅱ),2002:903-909.
  • 3龙海燕,张永志,宋朝河.基于BP神经网络的主成分分析法在效能评估中的应用[J].舰船电子工程,2008,28(9):81-84. 被引量:5
  • 4Alimoradi A,Moradzadeh A,Naderi R,et al.Prediction of geological hanzardous zones in front of a tunnel face using TSP-203 and artificial neural networks[J].Tunnelling and Underground Space Technology,2008,23(6):711-717.
  • 5Chen C H,Wu J C,Chen J H.Prediction of flutter derivatives by artificial neural networks[J].Journal of Wind Engineering and Industrial Aerodynamics,2008,96(10):1925-1937.
  • 6Singhal D,Swarup K S.Electricity price forecasting using artificial neural networks[J].Electrical Power and Energy Systems,2011,33(3):550-555.
  • 7Cao Q,Parry M E.Neural network earnings per share forecasting models:a comparison of backward propagation and the genetic algorithm[J].Decision Support Systems,2009,47(1):32-41.
  • 8Nasseri M,Asghari K,Abedini M J.Optimized scenario for rainfall forecasting using genetic algorithm coupled with artificial neural network[J].Expert Systems w ith Applications,2008,35(3):1415-1421.
  • 9张晓利,贺国光.基于主成分分析和组合神经网络的短时交通流预测方法[J].系统工程理论与实践,2007,27(8):167-171. 被引量:26
  • 10从爽.神经网络、模糊系统及在运动控制中的应用[M].合肥:中国科学技术大学出版社,2001.

二级参考文献31

共引文献126

同被引文献52

引证文献6

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部