期刊文献+

无线传感器网络中特征矢量和特征值的分布式计算

Distributed Computing of Eigenvectors and Eigenvalues in Wireless Sensor Networks
下载PDF
导出
摘要 针对集中式传感器网络在计算样本协方差矩阵的特征值和特征矢量过程中存在的数据拥塞问题,提出一种利用分布式传感器网络计算的解决方案,该方案利用幂法结合一致滤波相关理论,实现样本协方差矩阵的特征值和特征矢量的分布式计算。仿真结果验证了算法的有效性。 Due to the data congestion problem in the process of computing the eigenvalues and eigenvectors of sample covariance matrix by using centralized wireless sensor networks,a scheme which uses distributed wireless sensor networks is proposed.This scheme can compute the eigenvalues and eigenvectors of sample covariance matrix in a fully distributed way by using power method and average consensus filter related theory.Simulation results show the correctiveness and effectiveness of the algorithm.
作者 王晓兰
出处 《计算机与现代化》 2013年第9期167-171,共5页 Computer and Modernization
关键词 无线传感器网络 样本协方差矩阵 幂法 平均一致滤波 wireless sensor network sample covariance matrix power method average consensus filter
  • 相关文献

参考文献13

  • 1Gao J,Guibas L,Milosavljevic N,et al.Sparse data aggregation in sensor networks[C]//Proceedings of the 6th International Conference on Information Processing in Sensor Networks.2007:430-439.
  • 2Fan K W,Liu S,Sinha P.Structure-free data aggregation in sensor networks[J].IEEE Transactions on Mobile Computing,2007,6 (8):929-942.
  • 3Intanagonwiwat C,Govindan R,Estrin D,et al.Directed diffusion for wireless sensor networking[J].IEEE/ACM Transactions on Networking,2003,11 (1):2-16.
  • 4Rajagopalan R,Varshney P K.Data-aggregation techniques in sensor networks:A survey[J].IEEE Communications Surveys & Tutorials,2006,8 (4):48-63.
  • 5Krishnamachari B,Estrin D,Wicker S.Modelling data-centric routing in wireless sensor networks[C]//Proceedings of the 21st Annual Joint Conference of the IEEE Computer and Communications Societies.2002.
  • 6Mitola J.Cognitive Radio:An Integrated Agent Architecture for Software Defined Radio[D].Royal Institute of Technology (KTH),Stockholm,Sweden,2000.
  • 7Cardoso L S,Debbah M,Bianchi P,et al.Cooperative spectrum sensing using random matrix theory[C]// Proceedings of the 3rd International Symposium on Wireless Pervasive Computing.2008:334-338.
  • 8Zeng Yong-hong,Liang Ying-chang.Maximum-minimum eigenvalue detection for cognitive radio[C]//Proceedings of the 18th Annual IEEE International Symposium on Personal,Indoor and Mobile Radio Communications.2007.
  • 9王磊,郑宝玉,李雷.基于随机矩阵理论的协作频谱感知[J].电子与信息学报,2009,31(8):1925-1929. 被引量:18
  • 10Stewart G W.Matrix Algorithms[M].SIAM:Society for Industrial and Applied Mathematics,1998.

二级参考文献12

  • 1Sahai A.Spectrum sensing:Fundamental limits and practical challenges,DySPAN 2005 tutorial part I[C].DySPAN 2005,Maryland,Nov 2005:1-138.
  • 2Cardoso L S,Debbah M,and Bianchi P.Cooperative spectrum sensing using random matrix theory[C].ISWPC,Santorini,7-9 May 2008:334-338.
  • 3Zeng Yong-hong and Liang Ying-chang.Maximum minimum eigenvalue detection for cognitive radio[C].The 18th Annual IEEE International Symposium on Personal,Indoor and Mobile Radio Communications (PIMRC'07),Athens,3-7 Sept.2007:1-5.
  • 4Tulino A M and Verdu S.Random Matrix Theory and Wireless Communications[M].Boston:Now Publishers Inc,2004:168-189.
  • 5Mehta M L.Random Matrices[M].Third edition,London:Academic Press,2006:394-438.
  • 6Bai Z D and Silverstein Jack W.Spectral Analysis of Large Dimensional Random Matrices[M].Beijing:Science Press,2006:283-357.
  • 7Bai Z D.Methodologies in spectral analysis of large dimensional random matrices,a review[J].Statistica Sinica,1999,9(1):611-677.
  • 8Johnstone I M.On the distribution of the largest eigenvalue in principle components analysis[J].The Annals of Statistics,2001,29(2):295-327.
  • 9Johansson K.Shape fluctuations and random matrices[J].Communications in Mathematical Physics,2000,209(2):437-476.
  • 10Tracy C A and Widom H.On orthogonal and symplectic matrix ensembles[J].Communications in Mathematical Physics,1996,177(3):727-754.

共引文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部