期刊文献+

载重子午线轮胎接地特性的有限元分析 被引量:2

Finite Element Analysis on Ground Contact Performance of Truck and Bus Radial Tire
下载PDF
导出
摘要 采用Abaqus有限元分析软件建立11.00R20载重子午线轮胎与地面接触的三维有限元模型,研究轮胎的接地特性。结果表明:充气压力越高,轮胎接地区域应力出现中心低、边缘高翘曲现象的负荷值越大;下沉量增大,轮胎接地印痕从椭圆变为矩形,高压区由胎冠处移动到胎肩处;在各种工况中,轮胎静态接地面积最大;自由滚动时随着速度提高,轮胎接地印痕纵轴变长、横轴变短,但是接地面积增大,总接地反力也增大;摩擦因数对轮胎的自由滚动半径影响较小,但摩擦因数越大,纵向剪切应力越大,胎面越容易磨损;随着侧偏角增大,接地高压区逐渐向一边移动,接地印痕变为三角形。 The three dimensional model for 11.00R20 truck and bus radial tire in the ground con- tact area was established by using Abaqus finite element analysis software,and the ground contact per- formance of the tire was investigated. When the inflation pressure increased, the load value also in- creased at which the contact stress distribution started to distort into the distribution of low stress in the middle and high stress on the edge. As the tire deformation increased, the contact area transformed from ellipse shape into a rectangle,and the high pressure area shifted from the center part of contact area to tire shoulder. Among different operation conditions, the ground contact area under static state was the biggest. Under free rolling, with increase of speed, the longitudinal length of ground contact area increased,the horizontal length decreased, but the total contact area increased, and the counter force also increased. The influence of friction coefficient on the free rolling radius of the tire was not significant. However, when the friction coefficient increased, the longitudinal shear stress increased, and thus the tread wore out faster. As the slip angle increased, the high stress area moved to one side, and the shape of contact area changed to a triangle.
出处 《轮胎工业》 CAS 2013年第9期525-532,共8页 Tire Industry
关键词 载重子午线轮胎 自由滚动 接地压力 有限元分析 truck and bus radial tire free rolling contact stress finite element analysis
  • 相关文献

参考文献5

  • 1Rothert H, Idelberger H, Jacobi W. On the Finite Element Solution of the Three-dimensional Tire Contact Problem[J]. Nuclear Engineering and Design,1984,78(3):363-375.
  • 2程刚.子午线轮胎力学行为仿真及试验方法研究[D].济南:山东大学,2005.
  • 3路永婕,杨绍普,李韶华.载重子午轮胎与路面相互作用的分析[J].公路交通科技,2009,26(12):12-16. 被引量:6
  • 4Rothert H, Idelberger H,Jacobi W, et al. On the Contact Problem of Tires Including Friction [J]. Tire Science and Technology, 1985,13(2) .. 111-123.
  • 5韩加蓬,周孔亢,孙春玲.影响轮胎滚动半径的因素研究[J].农机化研究,2007,29(1):163-166. 被引量:16

二级参考文献14

  • 1周华飞,蒋建群.刚性路面在运动车辆作用下的动力响应[J].土木工程学报,2006,39(8):117-125. 被引量:12
  • 2KNOTHE K, WILE R, ZASTRAU B. Advanced Contact Mechanics Road and Rail [ J ] . Vehicle System Dynamics, 2001, 35 (4/5): 361-407.
  • 3POTrINGER M G. Three-dimensional Contact Patch Stress Field of Solid and Pneumatic Tires [ J ] . Tire Science and Technology, 1992, 20 (1) : 3 - 32.
  • 4NARASIMHA RAO K V, KRISHNA KUMAR R. Simulation of Tire Dynamic Behavior Using Various Finite Element Techniques [ J ]. Computational Methods in Engineering Science and Mechanics, 2007, 8 (5): 363-372.
  • 5HADI M N S, BODHINAYAKE BC. Non-linear Finite Element Analysis of Flexible Pavements [J]. Advances in Engineering Software, 2003, 34 (11/12): 657-662.
  • 6HIRSCHBERG W, RILL G, WEINFURTER H. User Appropriate Tyre Modelling for Vehicle Dynamics in Standard and Limit Situations [ J ] . Vehicle System Dynamics, 2002, 38 (2): 103-125.
  • 7PELC J. Towards Realistic Simulation of Deformations and Stresses in Pneumatic Tyres [J] . Applied Mathematical Modelling, 2007, 31 (3): 530-540.
  • 8YEOH O H. Characterization of Elastic Properties of Carbon Black Filled Rubber Vulcanizates [ J] . Rubber Chemistry and Technology, 1990, 63 (5): 792-805.
  • 9Niclas Persson, Federik Gustaffsson. Indirect tire pressure monitoring using sensor fusion[J].SAE paper, 2002(1):1250.
  • 10庄继德.现代汽车轮胎技术[M].北京:北京理工大学出版社,2002.

共引文献20

同被引文献23

  • 1王伟,邓涛,赵树高.利用加强筋单元分析子午线轮胎的结构[J].合成橡胶工业,2005,28(5):360-363. 被引量:3
  • 2张晓云,金先龙,亓文果,申杰.基于刹车印迹的典型碰撞事故再现分析[J].应用基础与工程科学学报,2006,14(3):418-426. 被引量:8
  • 3Nishihara 0, Higashino S. Exact optimization of four-wheel steering and four-wheel independent driving/braking forcedistribution with minimax criterion of tire workload [ J] . Japan Society of Mechanical Engineers ( Ser C ) , 2013, 79(799):629-644.
  • 4Ono E,Hattori Y,Muragishi Y,et al.Vehicle dynamics integrated control for four-wheel-distributed steering and four-wheel -distributed traction/braking systems[ J] .Vehicle System Dynamics,2006,44(2) : 139-151.
  • 5Mokhianiar 0, Abe M.Effects of model response on model following type of combined lateral force and yaw momentcontrol performance for active vehicle handling safety[J] .Japan Society of Automotive Engineers,2002,23(4) :473-480.
  • 6Ono E,Hattori Y,Aizawa H,et al.Clarification and achievement of theoretical limitation in vehicle dynamics integratedmanagement[ J] .Transactions of the Japan Society of Mechanical Engineers Part C ,2007,19( 5) : 1425-1432.
  • 7Ono E,Hattori Y, Muragishi Y. Estimation of tire friction circle and vehicle dynamics integrated control for four-wheeldistributed steering and four-wheel distiibuted traction/braking systems [J].H & D Review of Toyota CRDL, 2005,40(4):7-13.
  • 8Nishihara O,Masahiko K.Estimation of road friction coefficient based on the brush model[ J ] .Transactions of the JapanSociety of Mechanical Engineers,2011,133(4) ;0061-0069.
  • 9Gordon T.Vehicle dynamics lectures notes[ R] .Ann Arbor: University of Michigan, 2004.
  • 10Nakashima H, Oida A. Algorithm and implementation of soil-tire contact analysis code based on dynamic FE-DE method[J] .Journal of Terramechanics,2004,41(2) : 127-137.

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部