期刊文献+

水热法制备Sn/C球复合材料及其电化学性能 被引量:5

Electrochemical performance of Sn/C ball composite materials prepared by hydrothermal method
下载PDF
导出
摘要 以葡萄糖为碳源,锡酸钠为锡源,通过水热法制备Sn/C球复合材料。结果表明:样品的XRD峰均出现Sn的特征峰,Sn/C球尺寸为100 nm左右,粒径为10~30 nm的Sn颗粒被均匀地包覆在厚约30 nm的碳层中。考察不同水热时间对复合材料电化学性能的影响,水热时间6 h,烧结温度700℃,烧结保温时间2 h时,复合电极材料具有较高的可逆容量,首次可逆比容量为553.3 mAh/g,首次放充电(嵌脱锂)效率为74.7%,经100次循环后,充电比容量保持在500.2 mAh/g,循环效率为99.9%,具有较好的循环性能。 The Sn/C ball composite materials were prepared by hydrothermal method using glucose as carbon source and sodium stannate as tin source.The results show that,XRD peaks of samples have Sn characteristic peaks,Sn/C ball size is of around 100 nm,Sn grain with size of 10 to 30 nm is evenly coated by a carbon layer with thickness of 30 nm.The effect of hydrothermal reaction time on electrochemical performance of composite materials was studied.When hydrothermal reaction time is 6h,sintering temperature is 700 ℃,heatholding time is 2 h,the composite can obtain good reversible capacity of 553.3 mAh/g,and the discharge/charge effectiveness of the first time reaches 74.7%;even after 100 discharge/charge cycles the Sn/C ball composite materials have good circulation performance with specific charging capacity remains 500.2 mAh/g,and the circulating effectiveness is 99.9%.
出处 《粉末冶金材料科学与工程》 EI 北大核心 2013年第4期599-603,共5页 Materials Science and Engineering of Powder Metallurgy
基金 国家自然科学基金资助项目(21063003 51064004) 广西自然科学基金资助项目(2011GXNSFA018016)
关键词 锂离子电池 负极材料 SN C球 水热法 碳包覆 lithium ion battery negative materials Sn/C ball hydrothermal method carbon coating
  • 相关文献

参考文献12

  • 1INABA M, UNO T, TASKA A. Irreversible capacity of electrodeposited Sn thin film anode [J]. J. Power Sources, 2005, 146(1/2): 473-477.
  • 2WINTER M, BESENHARD J O. Electrochemical lithiation of tin and tin-based intermetallics and composites [J]. Electrochim Acta, 1999, 45(1/2): 31-50.
  • 3SUN X M, LIU J F, LI Y D. Oxides@C Core/Shell Nano structures: coupled synthesis, rational conversion and Li^+-Battery application [J]. J. Chem. Mater, 2006, 18: 3486-3494.
  • 4SUN X, LIU J, LI Y. Use of Carbonaceous polysaccharide microspheres as templates for fabricating metal oxidehollow spheres [J]. Chem.Eur:J, 2006, 12: 2039-2047.
  • 5ZHANG B H, YU X Y, GE C Y, et al. Novel 3-D superstructures made up of SnO2@C core-shell nanoehains for energy storage applications [J]. Chem Commun, 2010, 46: 9188-9190.
  • 6LOU X W, LI C M, ARCHER L A. Designed synthesis of coaxial SnO2@carbon hollow nanospheres for highly reversible lithium storage [J]. Adv. Mater, 2009, 21: 2536-2539.
  • 7WANG X, XI G, XIONG S, et al. Solution-phase synthesis of Single-Crystal CuO nanoribbons and nanorings [J]. Cryst. Growth Des, 2007, 7: 930-934.
  • 8周向阳,邹幽兰,杨娟,唐晶晶,赖延清,李劼.纳/微结构Sn-C复合负极材料的制备及其充放电性能[J].粉末冶金材料科学与工程,2012,17(2):182-188. 被引量:1
  • 9YU X Y, YANG S Y, ZHANG B H, et al. Controlled synthesis of SnO2/carbon core-shell nanochains as high-performance anodes for lithium-ion batteries [J]. J. Chem.Mater, 2011, 21: 12295-12302.
  • 10FAN X Y, ZHUANG Q C, JIANG H H, et al. Three-dimensional porous Cu6Sn5 alloy anodes for lithium-ion batteries [J]. Acta Phys-Chim Sin, 2007, 23(7): 973-977.

二级参考文献19

  • 1GARY M K, LLIAS B, DENG H X, et al. Composition-tailored synthesis of gradient transition metal precursor particles for lithium-ion battery cathode materials [J]. Journal of Chemistry Materials, 2011, 23(7): 1954-1963.
  • 2KUI H F, OHSUK G HINO T. influence of polystyrene/phenyl substituents in precursors on microstructures of Si-O-C composite anodes for lithium-ion batteries [J]. J Power Sources, 2011, 196: 371-378.
  • 3YANG Y, MCDOWELL T, JACKSON, et al. New nanostructured Li2S/silicon rechargeable battery with high specific energy [J]. J Nano Letters, 2010, 10(4): 1486-1491.
  • 4HASSOUN J, FERNICOLA A, NAVARRA M A, et al. An advanced lithium-ion battery based on a nanostructured Sn-C anode and electrochemically stable LiTFSi-Py24TFSI ionic liquid electrolyte [J]. Journal of Power Sources, 2010, 195(2): 574-579.
  • 5HE Jian-chao, ZHAO Hai-lei, WANG Meng-wei, et al. Preparation and characterization of Co-Sn-C anodes for lithium-ion batteries [J]. Materials Science and Engineering B, 2010, 171(1/3): 35-39.
  • 6ZOU Lin, GAN Lin, KANG Fei-yu, et al. Sn/C non-woven film prepared by electrospinning as anode materials for lithium ion batteries [J]. Journal of Power Sources, 2010, 195(4): 1216- 1220.
  • 7NG Man-fai, ZHENG Jian-wei, WU Ping. Evaluation of Sn nanowire encapsulated carbon nanotube for a Li-ion battery anode by DFT calculations [J]. The Journal of Physical Chemistry C, 2010, 114(18): 8542-8545.
  • 8LI Ju-chuan, YANG Fu-qian, YE Jia, et al. Whisker formation on a thin film tin lithium-ion battery anode [J]. Journal of Power Sources, 2011, 196(3): 1474-1477.
  • 9CHEN J S, CHEAH Y L, CHEN Y T, et al. SnO2 nanoparticles with controlled carbon nanocoating as high-capacity anode materials for lithium-ion batteries [J]. The Journal of Physical Chemistry C, 2009, 113(47): 20504-20508.
  • 10PAEK S M, YOO E J, HONMA I. Enhanced cyclic performance and lithium storage capacity of SnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexible structure [J]. Journal of Nanoletters, 2009, 9(1): 72-75.

同被引文献71

引证文献5

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部