期刊文献+

一类分数阶的病毒动力学模型 被引量:4

Virus Dynamics Model with a Class of Fractional-order
下载PDF
导出
摘要 提出了一类分数阶的具有Beddington-DeAngelis非线性发生率的病毒动力学模型,研究了模型解的非负性和有界性,得到了无病平衡点和病毒平衡点的稳定性条件,并给出了相应的数值例子. A class of fractional-order virus dynamics model with Beddington-DeAngelis is put forward. The positivity and boundedness of solutions are investigated. The stability and infected equilibria are obtained. Some numerical examples are given. nonlinear incidence rate conditions of uninfected
出处 《北华大学学报(自然科学版)》 CAS 2013年第5期508-511,共4页 Journal of Beihua University(Natural Science)
基金 安徽省自然科学基金青年项目(1208085QA11) 安徽省高校省级自然科学研究项目(KJ2012A001 KJ2013B003)
关键词 分数阶 病毒动力学模型 稳定性 fractional-order virus dynamics model stability
  • 相关文献

参考文献13

  • 1Nowak M A, Bonhoeffer S, Hill A M, et al. Viral Dynamics in Hepatitis B Virus Infection [ J 1- Proceedings of the National Academy of Sciences of the United States of America, 1996,93:4398-4402.
  • 2Nowak M A, Bangham C R. Population Dynamics of hnmune Responses to Persistent Viruses [ J ]. Science, 1996,272:74-79.
  • 3Min Lequan, Yumei Su, Kuang Yang. Mathematical Analysis of a Basic Virus Infection Model with Application to HBV hffection[ J ]. Rocky Mountain Journal of Mathematics,2008,38:1573-1585.
  • 4Hews S,Eikenberry S, Nagy J D ,et al. Rich Dynamics of a Hepatitis B Viral Infection Model with Logistic Hepatocyte Growth [ J]. Journal of Mathematical Biology,2009,60(4):573-590.
  • 5Huang Gang, Ma Wanbiao, Takeuchi Yasuhiro. Global Properties for Virus Dynamics Model with Beddington-Deangelis Functional Response [ J ]. Applied Mathematics Letters, 2009,22 : 1690-1693.
  • 6Huang Gang, Ma Wanbiao, Takeuchi Yasuhiro. Global Analysis for Delay Virus Dynamics Model with Beddington-Deangelis Functional Response[ J ]. Applied Mathematics Letters,2011,24 : 1199-1203.
  • 7Wang Xia, Tao Youde, Song Xinyu. A Delayed HIV-1 hffection Model with Beddington-Deangelis Functional Response [ J ]. Nonlinear Dynamics,2010,62:67-72.
  • 8Podlubny I. Fractional Differential Equations[ M]. San Diego:Academic Press, 1999.
  • 9Ahmed E, E1-Sayed A M A, E1-Saka Hala A A. On Some Routh-Hurwitz Conditions for Fractional Order Differential Equations and Their Applications in Lorenz, Rossler, Chua and Chen Systems[ J ]. Physics Letters A,2006,358:1-4.
  • 10WANG X Y, HE Y J, WANG M J. Chaos Control of a Fractional Order Modified Coupled Dynamos System [ J ]. Nonlinear Analysis, 2009,71 : 6126 -6134.

同被引文献22

  • 1Meeluskey C C. Complete global stability for art SIR epidemic model with delay-Distributed or discrete, Nordinear Anal [ J]. Real World Appl,2010,11 ( 1 ) :55-59.
  • 2Huang G, Ma W B, Takeuchi Y. Global Properties for Virus Dynamics Model with Beddington-Deangelis Functional Re- sponse [ J ]. Applied Mathematics Letters, 2009,22 ( 11 ) : 1 690-1 693.
  • 3Huang G, Ma W B,Takeuchi Y. Global Analysis for Delay Virus Dynamics Model with Beddington-Deangelis Functional Response[ J ]. Applied Mathematics Letters ,2011,24 (7) : 1 199-1 203.
  • 4Hu G P, Li X L. Stability and Hopf bifurcation for a delayed predator-prey model with disease in the prey[ J ]. Chaos, soil- tons & Fractals ,2012 ,45 (3) :229-237.
  • 5Hassard B D,Kazarinoff N D ,Wan Y H. Theory and Applications of Hopf Bifurcation[ M]. Cambridge: Cambridge Universi- ty Press, 1981.
  • 6徐玉华,谢承蓉.企业家激励和经济增长的混沌同步研究[J].长江大学学报:自然科学版:2006,3(6):498-499.
  • 7何汉林,涂建军,熊萍.一类Lurie混沌系统的全局渐近同步[J].华中科技大学学报(自然科学版),2010,38(2):38-40. 被引量:27
  • 8卞秋香,姚洪兴.复杂网络的线性广义同步[J].系统工程理论与实践,2011,31(7):1334-1340. 被引量:24
  • 9李建芬,李农.一类混沌系统的修正函数投影同步[J].物理学报,2011,60(8):87-93. 被引量:35
  • 10段光爽,任磊.一类带时滞的病毒模型的全局稳定性[J].西南民族大学学报(自然科学版),2012,38(1):24-28. 被引量:2

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部