期刊文献+

重构局部波动率曲面

Calibration of the Local Volatility Surface
下载PDF
导出
摘要 标的资产的局部波动率问题,无论在理论上还是实际应用中都有着重要的意义.对于欧式期权,本文采用待定系数法分析了期权定价的模型,证明了看涨期权和看跌期权的价格函数的有界性条件,推导出了局部波动率函数的半显式的解析解的表达式,有效地解决了在期权市场价格已知前提下的局部波动率校准反问题.数值实例选用了参数为常数的情形与波动率随着时间和执行价格的变化情况,数值结果说明了方法的有效性. It is of great importance to calibrate the local volatility of underlying asserts for both theoretical and practical applications. For European options, we discuss the option price modeling by the method of undetermined coefficients in this paper. A boundary condition is proved for pricing functions of call options and put options, and the semi-analytic solution of the local volatility function is presented, which effectively solves the inverse problem of calibrating the implied volatility on the premise of the market prices. Numerical results verify the effectiveness of the proposed method.
出处 《工程数学学报》 CSCD 北大核心 2013年第5期655-660,共6页 Chinese Journal of Engineering Mathematics
基金 国家自然科学基金(11171349) 北京市优秀人才培养项目(2010D005022000008 2011D005022000005) 北京联合大学应用文理学院2012年度院级科研项目~~
关键词 欧式期权 校准 局部波动率 European option calibration local volatility
  • 相关文献

参考文献11

  • 1Black F, Scholes M. The pricing of options and corporate liabilities[J]. Journal of Political Economy, 1973, 81(3): 637-659.
  • 2Jiang L S. Mathematical Modeling and Methods of Option Pricing (2nd Edition)[M]. Beijing: Higher Education Press, 2008.
  • 3Merton R. Option pricing when underlying stock returns are discontinuous[J]. Journal of Financial Eco- nomics, 1976, 3(1-2): 125-144.
  • 4Hull J, White A. An analysis of the bias in option pricing caused by a stochastic volatility[J]. Advances in Futures and Options Research, 1988, 3(1): 29-61.
  • 5Heston S. A closed-form solution for options with stochastic volatility with applications to bond and currency options[J[. Review of Financial Studies, 1993, 6(2): 327-343.
  • 6Dupire B. Pricing with a smile[J]. Risk, 1994, 7(1): 18-20.
  • 7Derman E, Kani I. Riding on a smile[J]. Risk, 1994, 7(2): 32-39.
  • 8Rodrigo M R, Mamon R S. A new representation of the local volatility surface[J]. International Journal of Theoretical and Applied Finance, 2008, 11(7): 691-703.
  • 9Shao Y, Diao Y. Micro-finance and the Foundations of Mathematics (2nd Edition) [M] . Beijing: Tsinghua University Press, 2008.
  • 10Hull J. Options, Futures and Other Derivatives (6th Edition) [M]. New Jersey: Prentice Hall, 2006.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部