期刊文献+

Vague集的扩展及其在模糊近似空间中的粗糙近似 被引量:1

Extension of the Vague Set and its Rough Approximations in the Fuzzy Approximation Space
下载PDF
导出
摘要 考虑到具体的博弈、利益团体投票或决策过程中,Vague集的表示往往受到决策者历史知识、感性判断等因素的限制,本文借助于模糊逻辑非门算子,对经典Vague集中隶属度与非隶属度之间的关系进行了改进,提出了广义Vague集的概念.利用三角模和三角余模,建立了模糊近似空间中广义Vague集的粗糙近似,定义和讨论了模糊近似空间中广义Vague集的粗糙度度量方法.最后给出了算例. Since Vague sets' representation is always restricted by the policy makers' historical knowledge, perceptual judgement and other factors in the game playing, benefit groups' voting or decision making process, we improve the relationship between the membership and the nonmembership degree for the vague sets, and define the generalized vague sets by means of the fuzzy logic non-portal operators in this paper. Meanwhile, by applying the triangular norms and conforms, we establish the generalized vague sets theory in the fuzzy approximation spaces. In addition, we discuss the roughness measure methods of the generalized vague sets. Finally we prensent a numerical example.
出处 《工程数学学报》 CSCD 北大核心 2013年第5期683-694,共12页 Chinese Journal of Engineering Mathematics
基金 国家自然科学基金(71061013 61262022) 甘肃省自然科学基金(1208RJZA251) 西北师范大学科技创新工程项目(NWNU-KJCXGC-03-61)~~
关键词 VAGUE集 模糊近似空间 粗糙近似 Vague set the fuzzy approximation space rough approximation
  • 相关文献

参考文献19

  • 1Zadeh L A. Fuzzy sets[J]. Information and Control, 1965, 8(3): 338-353.
  • 2Kickert W J M. Fuzzy Theories on Decision Making: a Critical Review[M]. Boston: Kluwer Academic Publishers, 1978.
  • 3Hwang C L, Yoon K. Multiple Attributes Decision Making: Methods and Applications[M]. Berlin: Springer- Verlag, 1981.
  • 4Laarhoven P J M, Pedrycz W. A fuzzy extension of Saaty's priority theory[J]. Fuzzy Sets and Systems, 1983, 11(3): 229-241.
  • 5Yager R R. Fuzzy decision-making including unequal objectives[J]. Fuzzy Sets and Systems, 1978, 1(2): 87-95.
  • 6Gau W L, Buehrer D J. Vague sets[J]. IEEE Transactions on Systems, Man and Cybernetics, 1993, 23(2): 61 D-61 4.
  • 7Atanassov K, Stoeva S. Intuitionistic fuzzy sets[J]. Fuzzy Sets and Systems, 1986, 20(1): 8%96.
  • 8Pawlak Z. Rough sets[J]. International Journal of Computer and Information Sciences, 1982, 11(5): 341-356.
  • 9Dubois D, Prade H. Rough fuzzy sets and fuzzy rough sets[J]. International Journal of General Systems, 1990, 17(2): 191-209.
  • 10Mi J S, Leung Y, Zhao H Y, et al. Generalized fuzzy rough sets determined by a triangular norm[J]. Information Sciences, 2008, 178(16): 3203-3213.

同被引文献12

  • 1ZADEH L A. Fuzzy sets[J]. Information andControl, 1965,8(3) : 338-356.
  • 2GAU W L, BUEHRER D J. Vague sets[J]. IEEETransactions on systems, Man and Cybernetics,1993, 23(2): 610-614.
  • 3ATANASSOV K, STOEVA S. Intuitionistic fuzzysets[J], Fuzzy Sets and Systems,1986,20(1):87-96.
  • 4PAWLAK Z. Rough sets[J]. International Journal ofComputer and Information Sciences,1982, 11 (5):341-345.
  • 5DUBOIS D, PRADE H. Rough fuzzy sets and fuzzyrough sets [J ]. International Journal of GeneralSystems,1990, 17(2) : 191-209.
  • 6Ml Ju-sheng,LEUNG Yee,ZHAO Hui-yin, et al.Generalized fuzzy rough sets determined by atriangular norm [ J]. Information Sciences,2008,178(16): 3203-3213.
  • 7ZHOU Lei, WU Wei-zhi. On generalizedintuitionistic fuzzy rough approximation operators[J]. Information Sciences, 2008, 178(11): 2448-2465.
  • 8ZHOU Lei, WU Wei-zhi. Characterization of roughset approximations in Atanassov intuitionistic fuzzyset theory [J]. Computers and Mathematics withApplications? 2011,62(1) : 282-296.
  • 9WANG Jue, LIU San-yang, ZHANG Jie.Roughness of a Vague sets [ J ]. InternationalJournal of Computational Cognition .2005 , 3 ( 3) :83-87.
  • 10AL-RABABAH A A, BISWAS R. Rough Vaguesets in an approximation space [ J]. InternationalJournal of Computational Cognition .2008, 6(4):60-63.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部