摘要
考虑到具体的博弈、利益团体投票或决策过程中,Vague集的表示往往受到决策者历史知识、感性判断等因素的限制,本文借助于模糊逻辑非门算子,对经典Vague集中隶属度与非隶属度之间的关系进行了改进,提出了广义Vague集的概念.利用三角模和三角余模,建立了模糊近似空间中广义Vague集的粗糙近似,定义和讨论了模糊近似空间中广义Vague集的粗糙度度量方法.最后给出了算例.
Since Vague sets' representation is always restricted by the policy makers' historical knowledge, perceptual judgement and other factors in the game playing, benefit groups' voting or decision making process, we improve the relationship between the membership and the nonmembership degree for the vague sets, and define the generalized vague sets by means of the fuzzy logic non-portal operators in this paper. Meanwhile, by applying the triangular norms and conforms, we establish the generalized vague sets theory in the fuzzy approximation spaces. In addition, we discuss the roughness measure methods of the generalized vague sets. Finally we prensent a numerical example.
出处
《工程数学学报》
CSCD
北大核心
2013年第5期683-694,共12页
Chinese Journal of Engineering Mathematics
基金
国家自然科学基金(71061013
61262022)
甘肃省自然科学基金(1208RJZA251)
西北师范大学科技创新工程项目(NWNU-KJCXGC-03-61)~~
关键词
VAGUE集
模糊近似空间
粗糙近似
Vague set
the fuzzy approximation space
rough approximation