期刊文献+

紧支撑正交复小波的参数化(英文) 被引量:1

Parameterizations of Orthogonal Complex Wavelets with Short Support
下载PDF
导出
摘要 近年来,紧支撑对称正交复小波被广泛应用到不同领域.本文给出一简单的方法对紧支撑的正交复小波进行参数化.该方法可以用来构造一类紧支撑、满足高阶求和法则的正交实值或复值小波.最后给出了具有不同性质的正交复小波的构造例子. The compactly supported orthogonal complex wavelets with symmetry have widely been used in various applications during the recent years. In this paper, we present a simple but complete method for the parameterizing orthogonal complex wavelets with length from four to six. This method can provide a class of orthogonal real or complex wavelets with short support and high sum rules. Furthermore, some examples are given in this paper.
出处 《工程数学学报》 CSCD 北大核心 2013年第5期773-780,共8页 Chinese Journal of Engineering Mathematics
基金 The National Natural Science Foundation of China(11071152) the Natural Science Foundation of Guangdong Province(10151503101000025 S2011010004511)
关键词 参数化 正交性 复小波 对称性 紧支撑 parameterization orthogonality complex wavelets symmetry compact support
  • 相关文献

参考文献8

  • 1Daubechies I. Ten Lectures on Wavelets[M]. Philadelphia: SIAM, 1992.
  • 2Lawton W. Applications of complex valued wavelet transforms to subband decomposition[J]. IEEE Trans- action on Signal Process, 1993, 44(12): 3566-3568.
  • 3Lina J M. Complex daubechies wavelets[J]. Applied and Computational Harmonic Analysis, 1995, 2(3): 219-229.
  • 4Clonda D, et al. Complex daubechies wavelets: properties and statistical image modeling[J]. IEEE Trans- action on SignM Process, 2004, 84(1): 1-23.
  • 5Han B. Symmetric orthonormal complex wavelets with masks of arbitrarily high linear-phase moments and sum rules[J]. Advances in Computational Mathematics, 2010, 32(2): 209-237.
  • 6Zhang X P, et al. Orthonormal complex filter banks and wavelets: some properties and design[J]. IEEE Transaction on Signal Process, 1999, 47(4): 1039-1048.
  • 7Pollen D. SUI(2, F[z, l/z]) for F a subfield of C[J]. Journal of the American Mathematical Society, 1990, 3(3): 611-624.
  • 8Lai M J, Roach D W. Parameterization of univariate orthogonal wavelets with short support[C]//Approx- imation theory X: Wavelets, Splines, and Applications, Nashville, Tenn, USA, Vanderbilt University Press, 2002:369-384.

同被引文献1

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部