摘要
本文在常值矩阵 A=(a_(ij))以零为 r 重特征根,其余根均有负实部条件下讨论了非驻定系统 dx/dt=sum.from to j=1(a_(ij)x_j+f_i(t,x_1,…,x_n))零解的稳定问题,得到了判断该系零解为稳定或不稳定的充分条件。
This paper discusses the stability of Non-stationary System dx_1/dt +f_1(t,x_1,…,x_n) under the conditions that the characteristic equation of costant matrix A=(a_(ij)) has r-multiple zero roots and its rest roots posses nagtive real parts.Sufficient conditions that can judge the trivial solution of the discussed system to be stable or not are obtained.
出处
《东北师大学报(自然科学版)》
CAS
CSCD
1991年第2期23-27,共5页
Journal of Northeast Normal University(Natural Science Edition)
关键词
非驻定系统
稳定性
特征根
non-stationary system
characteristil root
stability