摘要
Graphite dust has an important effect on the safe operation of a high-temperature gas-cooled reactor (HTR). The present study analyzes temperature and flow field distributions in the HTR-10 steam genera- tor. The temperature and flow field distributions are then used to study thermophoretic deposition and turbulent deposition. The results show that as the dust diameter increases, the thermophoretic deposition decreases, while the turbulent deposition first decreases and then increases. The thermophoretic deposi- tion is higher at higher reactor powers, with turbulent deposition growing more rapidly at higher reactor power. For small particles, the thermophoretic deposition effect is greater than the turbulent deposition effect, while for large particles, the turbulent deposition effect is dominant.
Graphite dust has an important effect on the safe operation of a high-temperature gas-cooled reactor (HTR). The present study analyzes temperature and flow field distributions in the HTR-10 steam genera- tor. The temperature and flow field distributions are then used to study thermophoretic deposition and turbulent deposition. The results show that as the dust diameter increases, the thermophoretic deposition decreases, while the turbulent deposition first decreases and then increases. The thermophoretic deposi- tion is higher at higher reactor powers, with turbulent deposition growing more rapidly at higher reactor power. For small particles, the thermophoretic deposition effect is greater than the turbulent deposition effect, while for large particles, the turbulent deposition effect is dominant.
基金
supported by the National S&T Major Project(Grant No.2008ZX06901-001)
the Tsinghua University Initiative Scientific Research Program(No.20111080959)