期刊文献+

Another representation of the β form of the inhomogeneous Picard-Fuchs equation

Another representation of the β form of the inhomogeneous Picard-Fuchs equation
原文传递
导出
摘要 In this letter we give another representation of the β form in the inhomogeneous Picard-Fuchs equation for open topological string for some one-parameter Calabi-Yau hypersurfaces in weighted projective spaces. Furthermore, the corresponding domain wall tensions calculated by using these β forms are consistent with the results that appear in literature. The β form is essential for the calculation of the D-brane domain wall tension, and a convenient choice of β forms should simplify the calculation. The freedom of the choice of β forms shows some symmetries in Calabi-Yau space. In this letter we give another representation of the β form in the inhomogeneous Picard-Fuchs equation for open topological string for some one-parameter Calabi-Yau hypersurfaces in weighted projective spaces. Furthermore, the corresponding domain wall tensions calculated by using these β forms are consistent with the results that appear in literature. The β form is essential for the calculation of the D-brane domain wall tension, and a convenient choice of β forms should simplify the calculation. The freedom of the choice of β forms shows some symmetries in Calabi-Yau space.
出处 《Chinese Physics C》 SCIE CAS CSCD 2013年第10期1-4,共4页 中国物理C(英文版)
基金 National Natural Science Foundation of China (11075204) President Fund of GUCAS (Y05101CY00)
关键词 topologcial string theory Calabi-Yau manifold domain wall tension D-BRANE topologcial string theory, Calabi-Yau manifold, domain wall tension, D-brane
  • 相关文献

参考文献13

  • 1Candelas P, DeLaOssa X C, Green P S, Parkes L. Nucl. Phys. B, 1991, 359:21-74.
  • 2Bershadsky M, Cecotti S, Ooguri H, Vafa C. Commun. Math. Phys, 1994, 165:311 428.
  • 3Walcher J. Commun. Math. Phys, 2007, 276:671-689.
  • 4Aganagic M, Vafa C. arXiv: hePth/0012041.
  • 5Morrison D R, Wachler J. Adv. Theor. Math. Phys, 2009, 13: 553-598.
  • 6Li S, Lian B H, Yau Shing-Tung. Amer. J. Math, 2012, 134: 1345-1384.
  • 7Witten E. Nucl. Phys. B, 1997, 507:658-690.
  • 8Walcher J. Nucl. Phys. B, 2009, S17:167-207.
  • 9Knapp J, Scheidegger E. Adv. Theor. Math. Phys, 2009, 13: 991-1075.
  • 10Krefl D, Walcher J. JHEP, 2008, 09:031-067.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部