期刊文献+

Fe_3O_4纳米微球的溶剂热法合成及其对二甲酚橙的催化降解研究 被引量:2

Solvothermal Synthesis of Fe_3O_4 Nanospheres and Study on the Catalytic Degradation of Xylenol Orange
下载PDF
导出
摘要 以FeCl3·6H2O为单一铁源、1,2-丙二醇为还原剂和溶剂、尿素为均相沉淀剂、顺丁烯二酸为添加剂,通过简单一步溶剂热法于160℃制备出了形貌均一、单分散性好、尺寸约为200 nm的Fe3O4纳米微球。所制备的Fe3O4纳米微球不仅具有很高的磁化强度,而且在利用过氧化氢氧化降解二甲酚橙(XO)的过程中显示出很好的催化活性。紫外可见分光光度法考察表明,不加入Fe3O4催化剂时,1 h内双氧水对二甲酚橙的脱色率仅为6.2%,而加入Fe3O4纳米微球后,双氧水对二甲酚橙的脱色率在1 h内即可达到100%,循环使用10次后,Fe3O4纳米微球仍保持高的催化活性和结构稳定性。 This paper reports a facile one-pot solvothermal approach for the preparation of 200nm-size Fe3O4 nanospheres with uniform morphology and monodispersity at 160 ℃. During this preparation process, FeC13-6H2O was used as a single iron source, 1, 2-propylene glycol as solvent and reducing agent, urea as a homogeneous precipitant and maleic acid as an additive. The as-prepared Fe3O4 nanospheres not only had high magnetization saturation value and but also displayed high catalytic activity during the process of xylenol orange (XO) being oxidized degradation by hydrogen peroxide (H2O2). The measurement of UV-Vis spectra indicated that the deeolorization rate of xylenol orange was only 6.2% with the oxidation of hydrogen peroxide without Fe3O4 catalyst. However, when Fe3O4 nanospheres were added to the solution, they showed excellent catalytic activity and the decolorization rate of XO could be increased to 100% within 1 h. The experiment also revealed that Fe3O4 nanospheres remained high catalytic activity and stability of material structure after recycling catalyzing of 10 times.
出处 《无机化学学报》 SCIE CAS CSCD 北大核心 2013年第10期2110-2118,共9页 Chinese Journal of Inorganic Chemistry
基金 国家自然科学基金(No.21273194) 江苏科技支撑计划-社会发展基金(No.BE2012705) 江苏省大学生实践创新训练计划基金(No.2012JSSPITP1372)资助项目
关键词 Fe3O4纳米微球 溶剂热法 催化降解 二甲酚橙 Fe3O4 nanospheres solvothermal method catalytic degradation xylenol orange
  • 相关文献

参考文献26

  • 1HONG Ruo-Yu(洪若瑜).Magnetic Nanoparticles and Magnetic Fluid(磁性纳米粒和磁性流体).Bejing:Chemical Industry Press,2009.
  • 2Laurent S,Forge D,Port M,et al.Chem.Rev.,2008,108(6):2064-2110.
  • 3Lu A H,Salabas E L,Schuth F.Angew.Chem.Int.Ed.,2007,46(8):1222-1244.
  • 4QIAO Rui-Rui(乔瑞瑞),ZENG Jian-Feng(曾剑峰),JIA Qiao-Juan(贾巧娟),et al.Wuli Huaxue Xuebao,2012,28(5):993-1011.
  • 5Zhou J,Qiao X Y,Binks B P,et al.Langmuir,2011,27:3308-3316.
  • 6HE Guang-Yu(何光裕),ZHANG Yan(张艳),QIAN MaoGong(钱茂公),et al.Wuji Huaxue Xuebao,2012,28(11):2306-2312.
  • 7Cheng W,Tang K B,Qi Y X,et al.J.Mater.Chem.,2010,20:1799-1805.
  • 8JIAO Hua(焦华),YANG He-Qing(杨合情),SONG Yu-Zhe (宋玉哲),et al.Huaxue Xuebao,2007,65(20):2336-2342.
  • 9Deng H,Li X L,Peng Q,et al.Angew.Chem.Int.Ed.,2005,117:2842-2845.
  • 10Zhu M Y,Diao G W.J.Phys.Chem.C.,2011,115:1380-1387.

同被引文献14

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部