期刊文献+

数据挖掘聚类算法研究及实现 被引量:2

Research and Implementation of Clustering Algorithm of Data Mining
下载PDF
导出
摘要 聚类算法是数据挖掘的核心技术。研究了一种多重系统聚类模型及其算法实现,将变量聚类和样本聚类结合起来,先将指标按一定的规则分成若干类别,然后对包含每一类别指标的样本数据分别进行聚类,使用这种多重聚类方法,分类性能有了较大提高。并且在此算法多重聚类的实现中,使用了两种方法赋值样本数据阵,使聚类的结果有了直观的比较。 Clustering algorithm is the core of data mining technology. In this paper, we propose a model of multilevel system clustering, which integrates Q-clustering with R-clustering, first take the sample and index dividing into the some category, then clustering the sample data that including each class sample and index. Using this kind of multilevel achieves a high performance. And then in this algorithm, using two methods to express sample data. Making the result of clustering has the comparison directly.
作者 周莹
机构地区 辽宁行政学院
出处 《信息技术与标准化》 2013年第9期32-34,共3页 Information Technology & Standardization
关键词 系统聚类 数据挖掘 知识发现 system clustering data mining KDD
  • 相关文献

参考文献5

二级参考文献21

  • 1[1]Hang T. BIRCH. An efficient data clustering method for very large database. In: Proc of the ACM SIGMOD International Conf. on Management of Data Montreal: ACM press, 1996,83 ~ 94.
  • 2[2]Udipto Guha, Rastogi R, Shim K. CURE: A clustering algorithm for large databases. Technical report, Bell Laboratories, Mucray Hill, 1997,67 ~ 78,1998,73 ~ 84.
  • 3[3]Martin Ester, Hans- Peter Kriegel, Jorg Sander, Xiaowei Xu. A desitybased algorithm for Discovery clusters in large spatial databs e with noise.In Proc. Of 2th International Conference on knowledge Discovery in Databases and Data Mining, Portland, Oregon, August, 1996.
  • 4[4]Gehrke J,Agrawal R,Gunopulos D,Raghavan P.Automatic Subspace Glustering of High Dimensional Data for Data Mining Applications. ACM SIGMOD, 1998,72(2) :94 ~ 105.
  • 5[5]Christopher J., Philip K., Systems for Knowledge Discovery in Databases.IEEE Trans. On Knowledge and Data Engineering. 1993,5 (6) :903 ~ 913.
  • 6[6]OPERSKI K., Han J., Adhikary J., Mining Knowledge in geographic data. In Comm. ACM 1997.
  • 7[7]Fayyad U., Haussler D., Mining Scientific Data, Communication of the ACM, 1996,39(11).
  • 8[8]Inmon W. ,Building the Data Warehouse. Boston:QED Technical Publishing Croup, 1992,163 ~ 312.
  • 9[9]Hongjun Lu, Hiroshi Motoda, Huan Liu, KDD: Techniques and Application. 1997,3 ~ 12.
  • 10[10]Orlando, Florida, Data Mining and Knowledge Discovery:Theory, Tools, and Technology. Proceedings of SPIE. Ⅱ,2000,259 ~ 264.

共引文献38

同被引文献20

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部