期刊文献+

最小权重有向频繁子图挖掘

Mining in minimum weighted frequent directed subgraphs
下载PDF
导出
摘要 权重有向图作为众多网络结构的抽象模型,是当前数据挖掘研究的热点,可作为厂区铁路线路的模型。本文针对权重有向图进行挖掘,提出了两种新算法,可以得到连通完整的子图。第1种算法WDSpan采用深度优先搜索策略在完成完整挖掘的基础上比较权重值的大小,第二种算法MWD以不同子图规模的平均权重和支持度之积作为新的计算度量,在挖掘过程中考虑权重因素,并在满足条件的子图中找到不同图规模的最小权重子图,实验证明该算法节省了存储空间。 Weighted directed graph, being the abstract model of many network structures, was the hotspot of data mining research currently, which could be used for the model of factory railway line as well. This paper aimed at mining weighted directed graph, two kinds of new algorithms were proposed and a connected complete subgraph could be obtained. The first algorithm WDSpan was used to compare the value of weight on the basis of using depth-first search strategy to complete integral mining. The second algorithm called MWD was used to take the product of different subgraph sizes' average weights and support line as a new calculation measure, the factor of weight was considered in the process of mining and the minimum weight subgraphs of different models were in subgraphs that met the condition. Experimental results showed that the algorithm reduced the space of memory.
作者 任威
出处 《铁路计算机应用》 2013年第7期5-10,共6页 Railway Computer Application
基金 铁道部科技研究重点课题(2012F009)
关键词 图挖掘 权重有向图 平均权重支持度阈值 厂区铁路 graph mining weighted directed graph average weight support limen factory railway
  • 相关文献

参考文献1

二级参考文献17

  • 1Borgelt C, Berhold MR. Mining molecular fragments: Finding relevant substructures of molecules. In: Proc. of the ICDM 2002. 2002. http://www.wi-lab.condicdm02/
  • 2Holder LB, Cook D J, Djoko S. Substructures discovery in the subdue system. In: Proc. of the AAAI'94 Workshop Knowledge Discovery in Databases. 1994. 169-180.
  • 3Inokuchi A, Washio T, Okada T, Motoda H. Applying algebraic mining method of graph substructures to mutageniesis data analysis. In: Proc. of the PAKDD. 2000. http://www.informatik.nni-trier.de/-ley/db/conf/pakdd/pakdd2000.html
  • 4Inokuchi A, Washio T, Okada T. An apriori-based algorithm for mining frequent substructures from graph data. In: Proc. of the PKDD 2000. LNAI 1910, 2000. 13-23. http://eric.univ-lyon2.fr/-pkdd2000/
  • 5Kuramochi M, Karypis G. Frequent subgraph discovery. In: Proc. of the ICDM 2001. 2001. http://www.cs.york.ac.uk/arch/neural/ Conferences/ICDM2001 .html
  • 6Yan Y, Han J. gSpan: Graph-Based substructure pattern mining. In: Proc. of the 2002 Int'l Conf. on Data Mining (ICDM 2002). Maebashi, 2002. http://www.wi-lab.com/icdm02/
  • 7Washio T, Motoda H. State of the art of graph-based data mining. In: Proc. of the SIGKDD 2003. http://www.sigkdd.org/kdd2003/
  • 8Yan X, Han J. CloseGraph: Mining closed frequent graph patterns. In: Proc. of the 9th ACM SIGKDD Int'l Conf. on Knowledge Discovery and Data Mining (KDD2003). Washington, 2003. http,://www.sigkdd.org/kdd2003/
  • 9Han J, Wang W, Prins J. Efficient mining of frequent subgraphs in the presence of isomorphism. In: Proc. of the IEEE Int'l Conf. on Data Mining (ICDM 2003), 2003. http://www.cs.sjsu,edu/faculty/tylirdicdm2003_workshop.htm
  • 10Jin R, Wang C, Polshakov D, Parthasarathy S, Agrawal G. Discovering frequent topological structures from graph datasets. In: Proc. of the KDD 2005. Chicago, 2005. 606-611. http://www.sigkdd.org/kdd2005/

共引文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部