期刊文献+

气相色谱法在离子液体与烷烃和脂类化合物相互作用研究中的应用 被引量:1

Application of gas chromatography on interaction of ionic liquids with alkanes and lipids
原文传递
导出
摘要 目的探讨离子液体与烷烃和脂类化合物的相互作用。方法采用气相色谱法,分别以三种离子液体——1-丁基-3-甲基咪唑双三氟甲烷磺酰亚胺离子液体[BMIm][NTf2]、实验室自制1-乙酸甲酯基-3-甲基双三氟甲磺酰亚胺离子液体[XMIml[NTf2]和1一对甲基苯甲酸甲酯基-3-甲基双三氟甲磺酰亚胺离子液体[YMIm][NTf2]作为固定相,以正己烷、正庚烷、正辛烷、正壬烷、三氯甲烷和乙酸乙酯为探针分子,计算70—110℃柱温的比保留体积、无限稀释质量分数活度系数、摩尔吸收焓、无限稀释摩尔混合焓和摩尔蒸发焓。结果不同柱温下,烷烃和三氯甲烷在【BMIm】[NTf2]柱,乙酸乙酯在【XMIm】[NTf2]柱的比保留体积较大;乙酸乙酯在[XMImJ[NTf2]柱的无限稀释质量分数活度系数较小;乙酸乙酯的无限稀释摩尔混合焓较小。结论【BMIm】【NTf2】与烷烃的相互作用较强,【XMIm】[NTf2]与乙酸乙酯的相互作用较强。 To explore the application of gas chromatography on interaction of ionic liquids with alkanes and lipids. Methods Three ionic liquids, [BMIm][NTf2], [XMIm][NTf2] and [YMImI[NTf2] were chosen as the stationary phase in gas chromatography respectively. Hexane, heptane, octane, nonane, chloroform, ethyl acetate were used as probe solutes. By using gas chromatography method, the retention time of the probe molecule was measured at 70-110 ~C, the retention volume(VsC), the activity coefficients at infinite dilution (~1~), the molar enthalpy of absorption (AHj~), the partial molar enthalpy of mixing at infinite dilution "(AH~~), and enthalpy of evaporation of the probe molecules (AHv), were calculated. Results Alkanes and chloroform in [BMIm][NTf2], and ethyl acetate in [XMIm][NTf2] had higher Vs. Ethyl acetate in [XMIm][NTf2] had lower of ethyl acetate was lower. Conclusion [BMIm][NTf2] had stronger interaction with alkenes,[XMIm][NTf2] had stronger interaction with ethvl acetate.
出处 《环境与健康杂志》 CAS CSCD 北大核心 2013年第9期809-811,共3页 Journal of Environment and Health
基金 国家自然科学基金(21177004)
关键词 气相色谱 离子液体 热力学参数 Gas chromatography Ionic liquid Thermodynamic parameters
  • 相关文献

参考文献5

  • 1石家华,孙逊,杨春和,高青雨,李永舫.离子液体研究进展[J].化学通报,2002,65(4):243-250. 被引量:197
  • 2韩彬,张丽华,梁振,屈锋,邓玉林,张玉奎.离子液体在分离领域的研究进展[J].中国科学:化学,2010,40(10):1487-1495. 被引量:22
  • 3Armstrong DW, He LF, Liu YS. Examination of ionic liquids and their interaction with molecules, when used as stationary phases in gas chromatography [J]. Anal Chem, 1999, 71: 3873-3876.
  • 4Heintz A, Kulikov DV, Verevkin SP. Thermodynamic properties of mixtures containing ionic liquids.l.activity coefficients at Infinite dilution of alkanes, alkenes, and alkyl benzenes in 4-methyl-n- butylpyridinum terafluoroborate using gas-liquid chromatography [J]. J Chem Eng Data, 2001, 46: 1526.
  • 5刘潮清,王小逸,孙东玲,陈慧敏,任海荣.自合成离子液体及其在有机溶剂中的电导率研究[J].环境与健康杂志,2013,30(7):630-633. 被引量:3

二级参考文献103

  • 1徐钦良,李长安,陈梅兰,范云场.离子液体液-液萃取高效液相色谱测定水中邻苯二甲酸酯类物质[J].分析试验室,2010,29(6):93-96. 被引量:15
  • 2李凯慧,陈志瑶,张少文,王晓东,吴采樱,邢钧.离子液体改性的气相色谱固定相研究[J].分析化学,2007,35(4):511-514. 被引量:12
  • 3Revelli AL, Mutelet F, Jaubert JN. Partition coefficients of organic compounds in new imidazolium based ionic liquids using inverse gas chromatography. J Chromatography A, 2009, 1216:4775-4786.
  • 4Dai Z, Xiao Y, Yu X, Mai Z, Zhao X, Zou X. Direct electrochemistry of myoglobin based on ionic liquid-clay composite films. Biosen Bioelectron, 2009, 24:1629-1634.
  • 5Wilkes JS, Zaworotko MJ. Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids. Chem Commun, 1992, 965-967.
  • 6Carvalho F, Marques MPC, Carvalho CCCR, Cabral JMS, Fernandes P. Sitosterol bioconversion with resting cells in liquid polymer based systems. Bioresource Technol, 2009, 100:4050-4053.
  • 7Ghilane J, Martin P, Fontaine O, Lacroix JC, Randriamahazaka H. Modification of carbon electrode in ionic liquid through the reduction of phenyl diazonium salt-electrochemical evidence in ionic liquid. Electrochem Cammun, 2008, 100: 1060--1063.
  • 8Zhu H, Lu XQ, Li MX, Shao YH, Zhu ZW. Nonenzymatic glucose voltammetric sensor based on gold nanoparticles/carbon nanotubes/ionic liquid nanocomposite. Talanta, 2009, 79:1446-1453.
  • 9Xu Y, Wang E. Ionic liquids used in and analyzed by capillary and microchip electrophoresis. J ChromatogrA, 2009, 1216:4817-4823.
  • 10Marszall MP, Kaliszan R. Application of ionic liquids in liquid chromatography. Cri Rev in Anal Chem, 2007, 37:127-140.

共引文献219

同被引文献26

  • 1Mihkel K. , Estonian Proc. Acad. Sci. Chem. , 2000, 49(3): 145-155.
  • 2Berthod A. , Zhou Y. W. , Kang L. , Armstrong D. W. , Anal. Chem. , 1995, 67(5): 849-857.
  • 3Armstrong D. W. , He L. F. , Liu Y. S. , Anal. Chem. , 1999, 71(17): 3873-3876.
  • 4Anderson J. L. , Armstrong D. W. , Anal. Chem. , 2005, 77(19): 6453-6462.
  • 5Payagala T. , Zhang Y. , Wanigasekara E. , Huang K. , Breitbach Z. S. , Sharma P. S. , Sidisky L. M. , Armstrong D. W. , Anal. Chem. , 2009, 81( 1 ): 160-173.
  • 6Heintz A. , Vasihsova T. V. , Safarov J. , Bich E. , Verevkin S. P. , J. Chem. Eng. Data, 2006, 51(2): 648-655.
  • 7Gwala N. V. , Deenadayalu N. , Tumba K. , Ramjugernath D. , J. Chem. Thermodyn. , 2010, 42(2): 256-261.
  • 8Reddy P. , Chiyen K. J. , Deenadayalu N. , Ramjugernath D. , J. Chem. Thermodyn. , 2011, 43(8): 1178-1184.
  • 9Safarov J. , Monika G. R. , Hassel E. , Heintz A. , J. Chem. Thermodyn. , 2012, 47, 56-61.
  • 10Izgorodina E. I., MacFarlane D. R., J. Phys. Chem. B, 2011, 115(49): 14659-14667.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部