期刊文献+

食饵具群体防卫效应和捕食者具阶段结构的脉冲控制捕食系统

A Prey with Group Defense and Predator with Stage-structure Prey-predator System Concerning Impulsive Control
下载PDF
导出
摘要 本文研究一类捕食者具有阶段结构和食饵具有群体防卫作用的脉冲控制系统,应用Floquet乘子理论和脉冲比较定理,获得食饵(害虫)灭绝周期解局部稳定和系统持续生存的充分条件,并通过数值例子揭示了系统诸如高倍周期振荡,混沌,吸引子突变,倍周期与半周期分支等复杂的动力学现象.讨论脉冲周期,成年食饵的投放量和群体防卫效应系数对系统的重要作用,得出的结论为实际的害虫管理提供了可靠的策略依据. A prey with group defense and predator with stage-structure prey-predator system concerning impulsive controlling is considered. The sufficient conditions for locally stable of prey-eradication periodic solution and permanence of the system are obtained,by using Floquet theorem and comparison theorem of impulsive differential equation. Numerical example show that the system considered has more complicated dynamics, such as high order periodic oscillating, chaos, attractor crisis, period-doubling and period-halving bifurcation, etc. The importance of the impulsive period,the released amount of mature predator and the coefficient of group defense effect are discussed. Our results provide reliable strategy basis for practical pest management.
出处 《应用数学》 CSCD 北大核心 2013年第4期711-718,共8页 Mathematica Applicata
基金 贵州省教育厅青年项目基金([2010]096)
关键词 群体防卫 阶段结构 脉冲控制 持续生存 混沌 Group defense Stage-structure Impulsive control Permanence Chaos
  • 相关文献

参考文献7

二级参考文献60

  • 1刘兵,陈兰荪,张玉娟.基于IPM策略的捕食与被捕食系统的动力学性质[J].工程数学学报,2005,22(1):9-14. 被引量:12
  • 2王俊博,柴立和.具有时滞效应的三物种食物链混沌行为研究[J].自然科学进展,2005,15(8):1020-1024. 被引量:4
  • 3Aiello W G, Freedman H I. A time delay model of single-species growth with stage structure[J]. Math Biosci, 1990,101 (2) : 139-153.
  • 4Dai B X, Zhang N, Zou J Z. Permanence for the Michaelis-Menten type discrete three-species ratio-dependent food chain model with delay[J ]. Math Anal Appl, 2006,324 (1) : 728-738.
  • 5Teng Z D, Abdurahman X. On the extinction for non-autonomous food chain systems with delays[J]. Nonlinear Anal Real World Appl, 2006,7 (2) : 167-186.
  • 6Sun Y G, Saker S H. Positive periodic solutions of discrete three-level food-chain model of Holling type Ⅱ[J]. Appl Math Comput, 2006,180 (1) : 353-365.
  • 7Chen Y Y, Yu J, Sun C J. Stability and Hopf bifurcation analysis in a three-level food chain system with delay[J]. Chaos, Solitons & Fractals, 2007,31 (3) : 683-694.
  • 8Xu R, Chaplain M A J, Davidson F A. A Lotka-Volterra type food chain model with stage structure and time delays[J]. Math Anal Appl, 2006,315 (1) : 90-105.
  • 9Yamaguchia M, Takeuchib Y, Ma W B. Dynamical properties of a stage structured three-species model with intraguild predation[J]. Comp Appl Math, 2007,201 (2) : 327-338.
  • 10Song X Y, Chen L S. Optimal harvesting and stability for a two-species competitive system with stage structure[J]. Math Biosci,2001,170(2) : 173-186.

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部