期刊文献+

非线性自治系统的半稳定和弱半稳定性(英文)

Semistability and Weak Semistability for Nonlinear Autonomous Systems
下载PDF
导出
摘要 研究非线性自治系统的半稳定和弱半稳定性问题.特别的,运用弱半稳定理论结合LaSalle不变原理,获得非线性自治系统半稳定的充分条件.相比已有结论本文结论具有更好地直观性和可行性.几个典型例子表明本方法的有效性. The problem of weak stability and weak semistability analysis for nonlinear autonomoussystems is investigated. Specially, by weak semistability theory and LaSalle's invariant principle,sufficient conditions for semistability of nonlinear autonomous systems are founded. By way of illustration, these results of this paper are more tractable and practical for semistability of nonlinear autonomous systems than the existing results in the literature. Several examples are included to show that the proposed method is effective.
出处 《应用数学》 CSCD 北大核心 2013年第4期756-764,共9页 Mathematica Applicata
基金 Supported by the National Natural Science Foundation of China (11171197)
关键词 半稳定 弱半稳定性 LaSalle不变原理 非线性系统 Semistability Weak semistability LaSalle's invariant principle Nonlinear system
  • 相关文献

参考文献11

  • 1Slotine J E, LI Weiping. Applied Nonlinear Control[M]. Beijing: Pearson Education Asia Ltd, 2004.
  • 2Bhat S P,Beistain D S. Nontangency-based Lyapunov tests for convergence and stability in systems hav- ing a continuum of equilibria[J]. SIAM J. Control Optim. , 2003,42:1745-1775.
  • 3Campbell S L,Rose N J. Singular perturbation of autonomous linear systems[J]. SIAM J. Math. , 1979, 10:542-551.
  • 4Bhat S P, Beistain D S. Are-length-based Lyapunov tests for convergence and stability with applications to systems having a continuum of equilibria[J]. Mathematics of Control, Signals, and Systems, 2010,22: 155-184.
  • 5Haddad W M, HUI Qing,Chellaboina V S. H2 optimal semistable control for linear dynamical systems: An LMI approach[J]. J. Franklin Inst. , 2011,348 : 2898-2910.
  • 6HUI Qing, Haddad W M,Bhat S P. Finite-time semistability and consensus for nonlinear dynamical net- works[J]. IEEE Trans. Automat. Control,2008,53: 1887-1900.
  • 7Haddad W M, Chellaboina V S. Stability and dissipativity theory for nonnegative dynamical systems: a unied analysis framework for biological and physiological systems[J]. Nonlinear Anal. Hybrid Appl. , 2005,6:35-65.
  • 8HUI Qing. Semistability of switched dynamical systems, part I,Linear system theory[J]. Nonlinear Anal. Hybrid Syst. , 2009,3 (3) : 354-362.
  • 9HUI Qing. Semistability of switched dynamical systems, part II: Non-linear system theory[J]. Nonlinear Anal. Hybrid Syst. ,2009,3(3) ,343-353.
  • 10Sastry S. Nonlinear Systems : Analysis, Stability, and Control[M]. New York : Springer-Verlag, 1999.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部