期刊文献+

一类分数阶脉冲微分包含解的存在性(英文) 被引量:1

The Existence of Solutions for Impulsive Fractional Differential Inclusions
下载PDF
导出
摘要 本文研究的是一类分数阶脉冲微分包含解的存在性.首先给出对应的脉冲微分方程解的正确形式,再利用非线性Leray-Schauder选择定理和PC-型Ascoli-Arzela定理证明解的存在性,并举例说明. This paper is concerned with the existence of solutions for impulsive fractional differential inclusions (IFDIs for short). A better presentation formula of solutions for impulsive fractional differential equations is given. By the means of nonlinear alternative Leray-Schauder type and PCtype Ascoli-Arzela Theorem,the existence of solutions for IFDIs is established when the multi-valued right hand side has convex values. The compactness of the solution set is also obtained. Two examples are given to illustrate the main results.
作者 朱彦 王良龙
出处 《应用数学》 CSCD 北大核心 2013年第4期828-838,共11页 Mathematica Applicata
基金 Supported by the Natural Science Foundation of China (10771001) the Anhui Provincial Natural Science Foundation (1308085MA01) the Research Fund for Doctor Station of Ministry of Education of China (20113401110001)
关键词 分数阶微分包含 脉冲问题 初值问题 存在性 不动点定理 Fractional differential inclusion Impulsive problem Initial value problem Existence Fixed point
  • 相关文献

参考文献12

  • 1Kilbas A A, Srivastava H M, Trujillo J J. Theory and applications of fractional differential equations [G]//North-Holland Mathematics Studies,vol. 204. Amsterdam: Elsevier Science B. V. ,2006.
  • 2Diethelm K. The analysis of fractional differential equations[G]//Lecture Notes in Mathematics. Braun- schweig : Springer, 2010.
  • 3Tarasov V E. Fractional Dynamics.. Application of Fractional Calculus to Dynamics of Particles, Fields and Media[M]. HEP : Springer, 2010.
  • 4Lakshmikantham V,Bainov D D, Simeonov P S. Theory of Impulsive Differential Equations[M]. Singa- pore/London.. World Scientic, 1989.
  • 5Feckan M,ZHOU Yang,WANG Jinrong. On the concept and existence of solution for impulsive fraction- al differential equations[J]. Commun. Nonlinear Sci. Numer. Simulat. , 2012,17 .. 3050-3060.
  • 6Tolstonogov A A. Differential Inclusions in Banach Spaee[M]. Dordrecht, Netherlands: Kluwer, 2000. Quahah A. Some results for fractional boundary value problem of differential inclusions[J]. Nonlinear A- nal. ,2008,69 : 3877-3896.
  • 7Henderson J, Quahab A. Impulsive differential inclusions with fractional order[J]. Comput. Math. Appl. , 2010,59 : 1191-1226.
  • 8Ahmada B, Nieto J J, Pimentel J. Some boundary value problems of fractional differential equations and inclusions[J]. Comput. Math. Appl. ,2011,62.. 1238-1250.
  • 9LV Linli, WANG Jinrong,WEI Wei. Existence and uniqueness results for fractional differential equa- tions with boundary value conditions[J]. Opuscula Math. ,2011,31: 629-643.
  • 10Dugundji J ,Granas A. Fixed Point Theory[J] New York:Springer-Verlag,2003.

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部