摘要
本文研究的是一类分数阶脉冲微分包含解的存在性.首先给出对应的脉冲微分方程解的正确形式,再利用非线性Leray-Schauder选择定理和PC-型Ascoli-Arzela定理证明解的存在性,并举例说明.
This paper is concerned with the existence of solutions for impulsive fractional differential inclusions (IFDIs for short). A better presentation formula of solutions for impulsive fractional differential equations is given. By the means of nonlinear alternative Leray-Schauder type and PCtype Ascoli-Arzela Theorem,the existence of solutions for IFDIs is established when the multi-valued right hand side has convex values. The compactness of the solution set is also obtained. Two examples are given to illustrate the main results.
出处
《应用数学》
CSCD
北大核心
2013年第4期828-838,共11页
Mathematica Applicata
基金
Supported by the Natural Science Foundation of China (10771001)
the Anhui Provincial Natural Science Foundation (1308085MA01)
the Research Fund for Doctor Station of Ministry of Education of China (20113401110001)
关键词
分数阶微分包含
脉冲问题
初值问题
存在性
不动点定理
Fractional differential inclusion
Impulsive problem
Initial value problem
Existence
Fixed point