期刊文献+

一类具有Riemann-Liouville分数阶导数的线性时不变微分系统的完全能控性(英文)

Complete Controllability of a Fractional Linear Time-invariant Differential System with Riemann-Liouville Derivative
下载PDF
导出
摘要 本文研究一类具有Riemann-Liouville分数阶导数的线性时不变微分系统的完全能控性.首先得到关于古典意义上状态方程初值问题的解,然后建立的关于系统能控性的判别准则是充分必要条件,并提供例子说明所得结果. This paper is concerned with the complete controllability of a fractional linear time-invariant dynamical system with Riemann-Liouville derivative. The solution of the state equation with classical initial value is first derived. Two criteria on controllability for the system, which are sufficient and necessary, are established. One example illustrates the obtained results.
出处 《应用数学》 CSCD 北大核心 2013年第4期870-875,共6页 Mathematica Applicata
基金 Supported by the Natural Science Foundation of China (11071001) the Program of Natural Science Research in Anhui Universities (KJ2013A032,KJ2011A020) the Scientic Research Starting Fund for Doctors of Anhui University (023033190001,023033190181) the 211 Project of Anhui University (023033050055,KJQN1001) the Research Fund for Doctoral Program of Higher Education of China (20123401120001) the Academic Innovation Project for Postgraduate Students of Anhui University (01001770-10117700017)
关键词 完全能控性 分数阶导数 线性系统 Complete controllability Fractional derivative Linear system
  • 相关文献

参考文献10

  • 1Podlubny I. Fractional Dierential Equations[M]. New York:Academic Press, 1993.
  • 2Kilbas A A,Srivastava Hari M,Trujillo Juan J. Theory and Applications of Fractional Differential Equa- tions[M]. Amsterdan.. Elsevier Science B. V. ,2006.
  • 3Kumar S,Sukavanam N. Approximate controllability of fractional order semilinear systems with bounded delay[J]. Journal of Differential Equations,2012,252 ..6163-6174.
  • 4Sakthivel R, Mahmudov N I,Nieto Juan J. Controllability for a class of fractional-order neutral evolution control systems[J]. Appllied Mathematics and Compution, 2012,218 : 10334-10340.
  • 5TAI Zhixin. Controllability of fractional impulsive neutral integro differential systems with a nonlocal Cauchy condition in Banach spaces[J]. Applied Mathematics Letters,2011,24..2158-2161.
  • 6Balachandran K, ZI-IOU Yong, Kokila J. Relative controllability of fractional dynamical systems with de- lays in control[J]. Commun. Nonlinear Sci. Numer. Simulat. , 2012,17 : 3508-3520.
  • 7Balachandran K, Park J Y,Trujillo J J. Controllability of nonlinear fractional dynamical systems[J]. Non- linear Analysis, 2012,75 .. 1919-1926.
  • 8WANG Jinrong, ZHOU Yong. Complete controllability of fractional evolution systems[J]. Commun. Nonlinear Sci. Numer. Simulat. , 2012,17 .. 4346-4355.
  • 9Adams J L, Hartley T F. Finite time controllability of fractional order systems[J]. Journal of Computa- tional and Nonlinear Dynamics,2008,3(2) :1-5.
  • 10JIANG Wei. The controllability of fractional control systems with control delay[J]. Computers and Mathematics with Applications,2012,64 : 3153-3159.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部