摘要
本文研究一类具有Riemann-Liouville分数阶导数的线性时不变微分系统的完全能控性.首先得到关于古典意义上状态方程初值问题的解,然后建立的关于系统能控性的判别准则是充分必要条件,并提供例子说明所得结果.
This paper is concerned with the complete controllability of a fractional linear time-invariant dynamical system with Riemann-Liouville derivative. The solution of the state equation with classical initial value is first derived. Two criteria on controllability for the system, which are sufficient and necessary, are established. One example illustrates the obtained results.
出处
《应用数学》
CSCD
北大核心
2013年第4期870-875,共6页
Mathematica Applicata
基金
Supported by the Natural Science Foundation of China (11071001)
the Program of Natural Science Research in Anhui Universities (KJ2013A032,KJ2011A020)
the Scientic Research Starting Fund for Doctors of Anhui University (023033190001,023033190181)
the 211 Project of Anhui University (023033050055,KJQN1001)
the Research Fund for Doctoral Program of Higher Education of China (20123401120001)
the Academic Innovation Project for Postgraduate Students of Anhui University (01001770-10117700017)
关键词
完全能控性
分数阶导数
线性系统
Complete controllability Fractional derivative Linear system