摘要
利用辅助常微分方程得到复合KdV方程的精确行波解.辅助常微分方程法的核心思路是:部分复杂非线性波动方程的行波解可以通过求解一些简单的、可解的微分方程——辅助常微分方程的方法得到解决.
The exact travelling wave solutions for the compound KdV equation are obtained by using a subsidiary ordinary differential equation method(sub-ODE method for short). The key ideas of the sub-ODE method are that the traveling wave solutions of a complicated nonlinear wave equation can be constructed by means of the solutions of some simple and solvable ODEs which are called sub-ODEs.
出处
《应用数学》
CSCD
北大核心
2013年第4期876-880,共5页
Mathematica Applicata
基金
Supported by the Foundation of President of Gansu Normal University for Nationalities (12-17)
关键词
复合KdV方程
非线性偏微分方程
辅助微分方程
行波解
非线性微分方程
Compound KdV equation Nonlinear ordinary differential equation Sub ODE method
Travelling wave solution ~ Nonlinear partial differential equation