期刊文献+

关于分段线性谱序列的研究 被引量:1

On Piecewise Linear Spectral Sequences
下载PDF
导出
摘要 本文研究L2[0,1]上的分段线性谱序列.讨论当节点θ≠1/2时,分段线性函数gn(t)成为谱序列的必要条件.我们研究一次项系数an=cn的情况,然后对于更一般的an,cn∈R情况,给出系数具有的特征. In this paper, we consider piecewise linear spectral sequences in L^2[0,1]. We obtain,when θ = 1/2, necessary conditions for piecewise linear functions to be spectral sequences. We study the an = cn case. Moreover,for more general case when an ,cn ∈ R, we show some properties.
作者 刘蓓 刘锐
出处 《应用数学》 CSCD 北大核心 2013年第4期888-893,共6页 Mathematica Applicata
基金 国家自然科学基金(11126250 11201336 11001134) 天津市自然科学基金(20100820)
关键词 分段线性谱序列 节点 标准正交基 Fourier基函数 Piecewise linear spectral sequenee Panel point Orthonormal basis Fourier basis function
  • 相关文献

参考文献1

二级参考文献11

  • 1Grochenig K. Foundations of Time Frequency Analysis. Birkhauser, Boston, 2001.
  • 2Liu Youming, Xu Yuesheng. Piecewise Linear Spectral Sequence. Proceedings of American Mathematical Society, 2005, 133:2297-2308.
  • 3Li Haitao. The Nonlinear Representation Theory and Algorithm for Signal Processing. Ms. thesis, 2004.
  • 4Mallat S. A Wavelet Tour of Signal Processing. Academic Press, San Diego, 1998.
  • 5Charles A. Micchelli, Xu Yuesheng. Using the Matrix Refinement Equations for the Construction of Wavelets on Invariant Sets. Appl. and Comp. Harm. Anal. 1994, 1:391-401.
  • 6Paley R E. A Remarkable Series of Orthogonal Functions I. Proc. Landon Math. Soc. 1932, 34:241-279.
  • 7Pan Wenjie. Fourier Analysis and Its Applications. Peking University Press, 2000.
  • 8Schipp F, Wade W R, Simon P. Walsh Series: An Introduction to Dyadic Harmonic Analysis, 1990.
  • 9Wang Yang. Wavelets, Tiling and Spectral Sets, Duke Math. J. , to appear.
  • 10Young R. An Introduction to Non-harmonic Fourier Series. Academic Press, London, 1980.

共引文献1

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部