期刊文献+

Poisson随机测度驱动的2D-Navier-Stokes方程的近似解

Approximate Solutions of Two-dimensional Navier-Stokes Equations Driven by Poisson Random Measures
下载PDF
导出
摘要 研究带有Poisson随机测度的二维Navier-Stokes方程的Euler近似解,在非Lipschitz条件下证明Euler近似解L2意义下收敛于解析解,从而推广已有的某些结果. In this paper, we study the Euler approximate solutions of two-dimensional Navier-Stoke equations with Poisson random measures and prove that the Euler approximate solutions converge to the analytical solutions in L^2 sense under non-Lipschitz condition. Some known results are generalized and improved.
作者 毛伟
出处 《应用数学》 CSCD 北大核心 2013年第4期934-942,共9页 Mathematica Applicata
基金 国家自然科学基金(11102076 11202085) 江苏省高校自然科学研究计划项目(13KJB110005) 江苏教育学院重点课题(Jsie2011zd04) 江苏省青蓝工程项目(2012) 江苏政府留学奖学金
关键词 随机二维Navier—Stokes方程 Poisson随机测度 Euler近似解 非Lipschitz 条件 Stochastic two-dimensional Navier-Stoke equation Poisson random measure Euler approximate solution Non-Lipschitz condition
  • 相关文献

参考文献2

二级参考文献26

  • 1Zhang Qimin,Nie Zankan. Existence and uniqueness for stochastic age-dependent population[A ]. Lecture Notes in Computer Science[C]. New York:Springer, 2005,3521 : 151-161.
  • 2Zhang Qimin, Zhang Weiguo, Nie Zankan. Convergence of the Euler scheme for stochastic functional partial differential equation[J]. Applied Mathematics and Computation,2004,155:479-492.
  • 3Zhang Qimin, Han Changzhao. Convergence of numerical solutions to stochastic age-structured popution system with diffusion[J]. Applied Mathematics and Compution,2007,186 : 1234-1242.
  • 4Sehmalfub B. Endliehdimensionale approximation der stoehastisehen Naviet-Stokes-Gleiehung[J]. Statistics, 1990,2 : 149-157.
  • 5Breckner H(Lisei). Galerkin approximatio and the strong solution of the stochastic Navier-Stokes equation[J]. J. Appl. Math. Stoch. Anal. ,2000,13:239-259.
  • 6Bjorn Schmalfuss. Qualitaive properties for the stochastic Navier-stokes equation[J]. Nonlinear Analysis, Theory, Methods & Applications, 1997,28(9): 1545-1563.
  • 7Zhang Qimin, Han Congzhao. Numerical analysis for stochastic age-dependent population equations[J]. Applied Mathematics and Computation,2005,169 : 278-294.
  • 8Liao Xiaoxin. Theory Methods and Application of Stability[M].武汉:华中科技大学出版社,1999.
  • 9Glenn Marion, Mao Xuerong, Eric Renshaw. Convergence of the Euler scheme for a class of stochastic differential equation[J]. International Mathematical Journal,2002, (1): 9-22.
  • 10Mao X. Stochastic Differential Equations and Applications[M]. New York, Horwood,1997.

共引文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部