期刊文献+

基于数控雕刻机的微流控芯片制作方法 被引量:1

Fabrication Method of the Microfluidic Chip Based on the Numerical Control Carving Machine
下载PDF
导出
摘要 介绍了一种基于数控雕刻机的简捷微流控芯片制作方法。结合数控雕刻机加工模式中平行粗加工和等高线细加工的优点,设计并提出了一种不对称路径加工方法,有效避免了微结构在加工过程中出现断裂、扭曲及其附近大量残渣堆积等现象。相对于传统基于微电子机械系统(MEMS)工艺的微流控芯片加工过程(涂胶、曝光、显影等工艺),该方法简捷易行,整个加工过程仅需3 h。实验结果表明芯片通畅性与密封性良好,满足实验要求。这种制作方法可以极大减少微流控芯片的加工时间和成本,为实验室微流控芯片的结构设计和前期原理验证提供了一种简捷有效的途径。 A simply fabrication method of the microfluidic chip based on the numerical control (NC) carving machine was introduced. Combing with the advantages of the roughing ZIG-ZAG and constant Z fabricating modes for the NC carving machine, an asymmetric path processing method was designed and proposed. The phenomena of the microstructure breakage, deformation and residue accumulation nearby the microstructure were avoided effectively by this method.Comparing with the traditional microfluidic chip fabricating process (photoresist coating, exposure, development and so on) based on the micro-electromechanical system (MEMS), this method is simple and easy to implement, and the whole fabrication process only requires 3 h. The experimental results indicate that the flowing and sealing of the microfluidic chip are good and meet the experimental requirements. This method can greatly reduce the process time and cost of the microfluidic chip, and provide a simple and effective way for the structure design and the preliminary theory verification of the microfluidic chip.
出处 《微纳电子技术》 CAS 北大核心 2013年第10期635-638,661,共5页 Micronanoelectronic Technology
基金 国家自然科学基金资助项目(61106109) 辽宁省自然科学基金资助项目(201102229)
关键词 微流控芯片 数控雕刻机 不对称路径 微电子机械系统(MEMS) 微细加工 microfluidic chip numerical control (NC) carving machine asymmetric path micro-electromechanical system (MEMS) micromachining
  • 相关文献

参考文献9

  • 1ONG S M, ZHANG C, TOH Y C, et al. A gel-free 3D mi- crofluidic cell culture system [ J ]. Biomaterials, 2008, 29 (22) : 3237- 3244.
  • 2MEI Z, GHO S H, ZHANG A, et al. Counting leukocytes from whole blood using a lalmoma-chip Coulter counter [C] // Proeeer dings of 2012.Annual International Conference of the IEEE EMBS. in Diego, California, USA, 2012: 6277- 6280.
  • 3HUANGCJ, CHIENHC, CHOUTC, et al. Integratedmi crofluidic system for electrochemical sensing of glyeosylated hemoglobin [ J ]. Microfhndics and Nanofluidics, 2011, 10 (1): 37 -45.
  • 4WANG Y, CHEN Z I., XIAO L, et al. Evaluating cell migration in vitro by the method based on cell patterning within microfluidic channels [J]. Electrophoresis, 2012, 33 (5) : 773 - 779.
  • 5YIN H B, MARSHALL D. Microfluidics for single cell analysis [J]. Current Opinion in Biotechnology, 2012, 23 (1) : 110- 119.
  • 6NILSSON J, EVANDER M, HAMMARSTROM B, et al. Review of cell and particle trapping in microfluidic systems [J]. Analytica Chimiea Acta, 2009, 649 (2): 141-157.
  • 7CHANG C M, CHIOU L F, L1N C C, et al. Three-dimen sional microfluidic chip for the extraction of mitochondrial DNA [J].Microfluidics and Nanofluidies, 2010, 9 (2/3): 489 - 498.
  • 8HUNG L Y, CHUANG Y H, KUO H T, et al. An integra ted microfluidie platform for rapid tumor cell isolation, coun ring and molecular diagnosis [J]. Biomedical Microdevices 2{113, 15 (2): 339-352.
  • 9GRAYSON A C R, SHAWGO R S, JOHNSON A M. et al. A bio-MEMS review: MEMS technology for physiologically integra- ted devices [J]. Proceedings of the IEEE, 2004, 92 (1): 6- 21.

同被引文献12

  • 1ONG S M, ZHANG C, TOH Y C, et al. A gel-free 3D mi- crofluidic cell culture system [J]. Biomaterials, 2008, 29 (22) : 3237 - 3244.
  • 2CHANG C M, CHIOU L F, I.IN C C, et al. Three-dimensional mi- crofluidic chip for the extraction of mitochondrial DNA [J]. Mi- crofluidics and Nanofluidics, 2010, 9 (2/3): 489-498.
  • 3HUNG L Y, CHUANG Y H, KUO H T, et al. An integrated mi- crofluidic platform for rapid tumor cell isolation, counting and mole- colar diagnosis [J]. Biomed Microdevices, 2013, 15 (2) : 339 - 352.
  • 4BESSOTH F G, MELLO A J, MANZ A. Microstructure for efficient continuous flow mixing [J]. Analytical Communica- tions, 1999, 36 (6): 213-215.
  • 5SHEEN H J, HSU C J, WU T H, et al. Experimental study of flow characteristics and mixing performance in a PZT self- pumping micromixer [J]. Sensors and Actuators: A, 2007, 139 (I/2): 237-244.
  • 6SUDARSAN A P, UGAZ V M. Muhivortex mieromixing [C] // Proceedings of the National Academy of Sciences of the United States of America. USA, 2006, 103 (19) : 7228- 7233.
  • 7RYU K S, SHAIKH K, GOLUCH E, et al. Micro magnetic stir-bar mixer integrated with parylene microfluidic channels[J]. Lab onaChip, 2004, 4 (6): 61)8-613.
  • 8LIN C H, FU I. M, CHIEN Y S. Mierofluidic T-form mixer utilizing switching electroosmotic flow [J]. Analytical Chemis- try, 2004, 76 118): 5265-5272.
  • 9LIU R H, YANG J N, PtNDERA M Z, et al. Bubble-induced acoustic mieromixing [J]. Lab on a Chip, 21)1)2, 2 (3): 151 - 157.
  • 10YANG S Y, LIN J I,, LEE G B. A vortex-type micromixer utili- zing pneumatically driven membranes [J]. Journal of Microme- chanics and Microengineering, 2009, 19 (3) : 35020 - 35028.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部