期刊文献+

化学刻蚀硅中电荷转移和纳米结构的形成

Charge Transfer and Nanostructure Formation in Chemical Etching of Silicon
下载PDF
导出
摘要 Turner机理对于化学刻蚀中多孔硅形成的描述中,并未对表面活性数据和纳米结构的形成进行详细解释。通过研究发现氧化物在纳米多孔硅薄膜的形成中并不起重要作用,基于对化学刻蚀和纳米结构形成机理的理解提出了刻蚀溶液选择的七条规则。使用这七条规则尝试了三种新的含有Fe3+,VO2+和Ce4+的刻蚀溶液并证实能有效制备多孔硅。这些溶液可以避免由硝酸盐/亚硝酸盐为基础的刻蚀溶液所造成的问题,其优点包括无需活化、诱导时间缩短以及厚度均一膜的可重复性,因而是化学刻蚀工艺中一个重要的进展。 In the description of the Turner mechanism for the porous silicon formation during the chemical etching, the surface active data and nanostructure formation were not explained in detail. It is found that the oxide does not play an important role in the formation of the nanoporous silicon film. Based on the understanding of the chemical etching and nanostructure formation mechanism, the seven rules to choose the etching solution were proposed. Using the seven rules,three new etching solutions contained Fe^3+,VO^2+ and Ce^4+ were tried. And it is confirmed that these solutions can prepare the porous silicon effectively. These solutions can avoid the problems caused by the nitrate/nitrite-based etching solutions, their advantages include without activation,shorter induction time and reproducibility of films with uniform thickness, which is an important progress of the chemical etching process.
出处 《微纳电子技术》 CAS 北大核心 2013年第10期639-645,共7页 Micronanoelectronic Technology
基金 国家自然科学基金资助项目(61107027)
关键词 电化学 化学刻蚀 纳米多孔硅薄膜 电荷转移 电解抛光 electrochemistry chemical etching nanoporous silicon film charge transfer electropolishing
  • 相关文献

参考文献26

  • 1HOCHBAUM A I, YANG P D. Semiconductor nonawires for energy conversion [J]. Chemical Reviews, 2010, 110 (1) : 527 - 546.
  • 2GRATZEL M. Solar energy conversion by dye-sensitized pho- tovoltaic cell [J]. Biological Inorganic Chemistry, 2005, 44 (20): 6841-6851.
  • 3TEVA J, DAVIS Z J, HANSEN O. Electroless porous silicon formation applied to fabrication of boron-silica-glass cantilevers [J]. Journal of Micromechanics and Microengineering, 2010, 20 (1): 015-034.
  • 4PENG K Q, WANG XIN, LEE S T. Gas sensing properties of single crystalline porous silicon nanowires [J]. Applied Physics Letters, 2009, 95 (24) : 243112-1 - 243112 3.
  • 5ROBBINS H, SCHWARTZ B. Chemical etching of silicon: Ⅰ. the system HF, HNO3 and H20 [J]. Journal of the Electro- chemical Society, 1959, 106 (6) : 505- 508.
  • 6ROBBINS H, SCHWARTZ B. Chemical etching of silicon: If. the system HF, HNO3 , H20 and HC2C302 [J]. Journal of the Electrochemical Society, 1960, 107 (2) : 108 - 111.
  • 7ROBBINS H, SCHWARTZ B. Chemical etching of silicon:Ⅲ. a temperature study in the acid system [J]. Journal of the Elec- trochemical Society, 1961, 108 (4) : 365 - 372.
  • 8TURNER D R. On the mechanism of chemically etching ger- manium and silicon [J]. Journal of Electrochemical Society, 1960, 107 (10): 810-816.
  • 9TSUJINO K, MASTUMURA M. Helical nanoholes bored in silicon by wet chemical etching using platinum nanoparticles as catalyst [J]. Electrochemical and Solid-State Letters, 2005, 8 (12): C193-C195.
  • 10TSUJINO K, MASTUMURA M. Boring deep cylindrical na- noholes in silicon using silver nanoparticles as a catalyst [J]. Advanced Materials, 2005, 17 (8) : 1045 - 1047.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部