期刊文献+

一种基于立体视觉显著性的多视点视频比特分配方法 被引量:3

A bit allocation method for multi-view video coding based on stereoscopic visual saliency
原文传递
导出
摘要 针对多视点立体视频压缩编码,提出了一种基于立体视觉显著性的比特分配方法。研究综合利用多视点立体视频数据中场景的运动、深度以及深度边缘信息提取人眼感兴趣区域(ROI)的方法;然后根据ROI的划分结果优化区域比特分配。实验结果表明,本文提出的算法能有效提高ROI区域的编码性能,同时整体视频的率失真性能有一定程度的提高。 Human visual system (HVS) based video coding has obvious research significance. Saliency model has been employed to the detection of interesting regions and thus applied to the region based bit allocation of video coding. The regions of interest (ROIs) are allocated more bits and other regions are allocated fewer bits in order to reduce the transmission bits while keeping good perceptual quality. How- ever, the conventional ROI based bit allocation algorithms in 2D video coding cannot be applied directly to 3D video coding. This paper proposes a bit allocation method based on stereoscopic visual saliency for multi-view video coding (MVC). We propose an ROI segmentation model which utilizes the information of motion, depth and the edge of depth maps. The extracted results show that our proposed segmentation model can achieve good performance. Then, a regional bit allocation scheme is realized by adjusting quan- titative parameter (QP) based on the ROI segmentation results to allocate more bits to ROI and fewer bits to other regions. Video sequences with different characteristics are utilized to evaluate the perform- ance of our proposed bit allocation method. Experimental results demonstrate that the proposed method can effectively enhance the performance of ROI as well as the whole video.
出处 《光电子.激光》 EI CAS CSCD 北大核心 2013年第10期1995-2001,共7页 Journal of Optoelectronics·Laser
基金 国家自然科学基金(61271324 60932007 61202266 61202380) 天津市自然科学基金(12JCYBJC10400 12JCQNJC00300)资助项目
关键词 多视点视频(MVV) 视觉显著性 感兴趣区域(ROI) 比特分配 multi-view video (MVV) visual saliency region of interest (ROD bit allocation
  • 相关文献

参考文献18

  • 1Holliman N S,Dodgson N A,Favalora G E,et al. Three-di-mensional displays: a review and applications analysis[J]. IEEE Transactions on Broadcasting, 2011, 57 (2):362-371.
  • 2ZHANG Qiu-wen,AN Ping, ZHANG Yan,et al. Multi-viewimage depth estimation for coding and view renderingsynthesis[J]. Journal of optoelectronics . Laser ,2011,22(10).1569-1574.
  • 3张秋闻,安平,张艳,张倩,张兆杨.面向编码和绘制的多视点图像深度估计[J].光电子.激光,2011,22(10):1569-1574. 被引量:6
  • 4Vetro A,Wiegand T,Sullivan G J. Overview of the stereoand multiview video coding extensions of the H. 264/MPEG-4 AVC standard [J]. Proc of IEEE, 2011, 99 (4):626-642.
  • 5ZHU Ya-pei,JIANG Gang-yi’WANG Xiao-dong,et al. Mul-tiview depth video coding based on foveated just-noticea-ble-distortion model [J]. Journal of optoelectronics . La-ser,2012,23(12) :2382-2390.
  • 6朱亚培,蒋刚毅,王晓东,郁梅,邵枫,彭宗举.基于中心凹恰可觉察失真模型的多视点深度视频编码方法[J].光电子.激光,2012,23(12):2382-2390. 被引量:5
  • 7HU Su-deng,Kwong S,ZHANG Yun,et al. Rate-distortionoptimized rate control for depth map-based 3-D videocoding[J]. IEEE Transactions on image processing,2013,22(2):585-594.
  • 8Ryu S,Sohn K. Depth-based direct mode for multiviewvideo coding [J]. Signal processing: image communica-tion,2012,27(6) :571-578.
  • 9XIONG Bing, FAN Xiao-jiu,ZHU Ce. Face region basedconversational video coding [ J]. IEEE Transactions onCircuits and Systems for Video Technology,2011,21(7):917-931.
  • 10Oh H,Kim W. Video processing for human perceptual vis-ual quality-oriented video coding [J]. IEEE Transactionson Image Processing,2013,22(4) : 1526-1535.

二级参考文献22

  • 1刘苏醒,安平,宓桃,张兆杨.自由视点视频系统中虚拟视合成及校正方法[J].光电子.激光,2009,20(9):1234-1237. 被引量:3
  • 2张倩,刘苏醒,鞠芹,安平,张兆杨.采用图像修复的基于深度图像复制[J].光电子.激光,2009,20(10):1381-1384. 被引量:7
  • 3Tanimoto M. Overview of free viewpoint television[J]. Signal Processing: Image Communication, 2006,21(6):454-461.
  • 4Chert Y,Wang Y K,Ugur K,et al. The emerging MVC standard for 3D video services[J]. EURASIP Journal on Advances in Signal Processing, 2009,2809 : 1-13.
  • 5Smolic A, Mueller K, Merkle P, et al. Multi-view video plus depth(MVD) format for advanced 3D video systems, JVT Report W100[R]. San Jose,USA:ITUT and ISO/IEC JTC1,2007.
  • 6Tanimoto M, Fujii T, Suzuki K, et al. Multi-view depth map of Rena and Akko & Kayo, MPEG Report M14888[R]. Shenzhen,China:ISO/IEO JTC1/SC29/WG11,2007.
  • 7Tanimoto M, Fujii T, Suzuki K, et al. Reference software for depth estimation and view synthesis, MPEG Report M15377 [R]. Archamps, France; ISO/IEC JTC1/SC29/WG11,2008.
  • 8Pedro F F,Daniel P. H. Efficient belief propagation for early vision[J]. International Journal of Computer Vision,200? ,70(1): 41-54.
  • 9Kolmogorov V, Zabih R. What energy functions can be minimized via graph cuts? [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2004,26(2) : 147-159.
  • 10Zitnick L,Kang S B, Uyttendaele M, et al. High-quality video view interpolation using a layered representation[J]. ACM Trans. Graphics, 2004,23(3) :598-606.

共引文献9

同被引文献32

  • 1Itti L. Models of bottom-up E D ]. California: Computat Technol, Pasadena, 2000. and top-down visual attention Neur.
  • 2Syst., California Inst. Itti L, Koch C, Niebur E. Model of saliency-based visual attention for rapid scene analysisl-J]. IEEE Trans. Pattern Anal. Mach. Intell, 1998,20(11) : 1254-1259.
  • 3Harel J, Koch C, Perona P. Graph-based visual saliency [J]. Advances in neural information processing systems, 2007,19:545-552.
  • 4Yang C, Zhang L. Saliency detection via graph-based manifold rankingl-A~. Proc. of Computer Vision and Pat- tern Recognition, IEEE Conference on l-C]. 2013, 3166- 3173.
  • 5Hou X, Zhang L. Saliency detection= A spectral residual approachrA]. Proc. of Computer Vision and Pattern Rec- ognition, IEEE Conference onEC]. 2007,1-8.
  • 6Achanta R, Hemami S, Estrada F, et al. Frequency-tuned salient region detection[A~. Proc. of Computer Vision and Pattern Recognition, IEEE Conference on[C]. 2009, 1 597- 1604.
  • 7Maybank S. A probabilistic definition of salient regions forimage matching[J]. Nuerocomputing, 2013,120 ( 23 ) : 4- 14.
  • 8Yang J,Yang M. Top-down visual saliency via joint CRF and dictionary learningI-A-I. Proc. of Computer Vision and Pattern Recognition, IEEE Conference on~C~. 2012,2296- 2303.
  • 9Cui J,Xie J. Corner detection on finger vein images using the improved Harris algorithmI-J~. Optik, 2014,125 ( 17 ) 4668-4671.
  • 10Yang C, Zhang L. Graph-regularized saliency detection with convex-hull-based center prior[J]. IEEE Signal Pro- cessing Letters,2013,20(7) ..637-640.

引证文献3

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部