期刊文献+

一种基于云计算的并行流生成方法

A Parallel Flow Generating Approach Based on Cloud Computing
下载PDF
导出
摘要 在高速网络中,网络设备的分组转发性能在打开流采集功能后会受其影响。为此,提出一种在网络设备外基于云计算平台的并行流生成方法。在需要监测的网络设备附近部署小型云,把分组流量复制到云中,采用云的Map-Reduce并行处理框架快速地从海量分组数据中生成流记录。设计基于Map-Reduce框架的并行流生成算法,通过配置合适数量的云节点,可分析任意大小的网络流量。用实际网络分组数据对并行流生成方法的性能进行验证,实验结果表明,在由3台、5台或7台节点构成的小型云平台上,从超过40 GB的文本分组数据中共提取了15 160 052条流,与顺序处理相比,耗费时间至少可减小85%、90%和94%。 In high speed networks, the forwarding performance of a network device which captures flows is inevitably degraded. A parallel flow generating approach based on small size cloud computing platform outside of network device is proposed. A small size cloud can be deployed near the selected network device being monitored, and packet traffic through the network device is copied into the cloud. Then flow records can be extracted fast from the large volume packet traffic by the parallel Map-Reduce framework of cloud. A parallel flow extraction algorithm based on Map-Reduce framework is proposed. In addition, cloud scale is flexible to expand, and by configuring proper cloud workers, this approach can be adopted to analyze network traffic in arbitrary size. Real network packet traffic is used to verify the performance of the parallel flow generating approach. Analysis results show that in clouds consisting of 3, 5 or 7 worker nodes, 15 160 052 flows are recognized from more than 40 GB text packet data, and comparing against sequentially processing method, the consumed time are reduced by more than 85%, 90% and 94%, respectively.
作者 孙韩林
出处 《计算机工程》 CAS CSCD 2013年第10期10-13,共4页 Computer Engineering
基金 陕西省教育厅自然科学基金资助项目(11JK1018)
关键词 网络流量分析 并行处理 Map—Reduce框架 HADOOP平台 network traffic analysis parallel processing Map-Reduce framework Hadoop platform
  • 相关文献

参考文献15

  • 1陈亮,龚俭.基于NetFlow记录的高速应用流量分类方法[J].通信学报,2012,33(1):145-152. 被引量:9
  • 2Tran Q A, Jiang F, Hu Jiankun. A Real-time NetFlow-based Intrusion Detection System with Improved BBNN and High-frequency Field Programmable Gate Arrays[C]//Proc. of the llth International Conference on Trust, Security and Privacy in Computing and Communications. Liverpool, UK: IEEE Press, 2012.
  • 3郑建忠,周世杰,王娟.基于NetFlow的动态K层特征模型库建立[J].计算机工程,2010,36(22):165-167. 被引量:2
  • 4许博,陈鸣,胡超,孙瑞锦.基于NetFlow的P2P流分析系统[J].北京邮电大学学报,2010,33(2):94-98. 被引量:2
  • 5Ye Wei, Luo Xuan, Xie Rui, et al. Combining sFlow and Tracker Traffic Analysis: A Novel Estimation Approach for Network-wide BitTorrent Distribution[C]//Proc. of the 13th Asia-Pacific Network Operations and Management Sympo- sium. Taipei, China: [s. n.], 2011.
  • 6Zhu Haiting, Zhang Xiaoguo, Ding Wei. Research on Errors of Utilized Bandwidth Measured by NetFlow[C]//Proc. of the 2nd International Conference on Networking and Distributed Computing. Beijing, China: [s. n.], 2011.
  • 7Lee M, Duffield N, Kompella R R. Opportunistic Flow-level Latency Estimation Using Consistent Netllow[J]. IEEE/ACM Transactions on Networking, 2012, 20(1): 139-152.
  • 8高磊,杨家海,张辉,李福亮,张宾.基于Netflow的网络流量测量基础设施建设[J].广西大学学报(自然科学版),2011,36(A01):78-82. 被引量:4
  • 9Liu Yuhui, Sun Jinshan, Sun Rui, et al. Next Generation Intemet Traffic Monitoring System Based on NetFlow[C]// Proc. of Intemational Conference on Intelligent System Design and Engineering Application. Changsha, China: [s. n.], 2010.
  • 10Deri L, Chou E, Cherian Z, et al. Increasing Data Center Network Visibility with Cisco NetFlow-Lite[C]//Proc. of the 7th International Conference on Network and Service Management. Parise, France: Is. n.], 2011.

二级参考文献41

  • 1岳仑,杜新华,张华.特征检测与异常检测相结合的入侵检测模型[J].通信技术,2003,36(11):106-108. 被引量:4
  • 2林果园,郭山清,黄皓,曹天杰.基于动态行为和特征模式的异常检测模型[J].计算机学报,2006,29(9):1553-1560. 被引量:25
  • 3宫婧,孙知信,顾强.基于行为特征描述的P2P流识别方法的研究[J].小型微型计算机系统,2007,28(1):48-53. 被引量:5
  • 4刘元勋,徐秋亮,云晓春.面向入侵检测系统的通用应用层协议识别技术研究[J].山东大学学报(工学版),2007,37(1):65-69. 被引量:5
  • 5Claffy K C. Internet traffic characterization [ D ]. San Diego: University of California, 1994.
  • 6Sen S, Spatscheck O, Wang D. Accurate, scalable in-network identification of P2P traffic using application signatures[C]// Proceedings of the 13th International Conference on World Wide Web. New York: ACM, 2004 : 512-521.
  • 7Roughan M, Sen S, Spatscheck O, et al. Class-of-service mapping for QoS: a statistical signature-based approach to IP traffic classification[ C ]//Proceedings of the 4th ACM SIGCOMM Conference on Internet Measurement. New York: ACM, 2004: 135-148.
  • 8Moore A, Papagiannaki K. Toward the accurate identification of network applications [M]. Berlin: Springer, 2005 : 41-54.
  • 9Bernaille L, Teixeira R, Salamatian K. Early application identification [ C ] // Proceedings of the 2006 ACM CoNEXT Conference. New York: ACM, 2006: 6.
  • 10Crotti M, Dusi M, Gringoli F, et al. Traffic classification through simple statistical fingerprinting [ C ]// ACM SIG- COMM Computer Communication Review. New York: ACM, 2007: 5-16.

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部