摘要
针对公钥密码体制中的密钥管理和签名方隐私保护问题,基于整数环Zn圆锥曲线上的公钥密码体制和签名体制,提出一种无证书强指定验证者签名方案。利用圆锥曲线上的RSA签名技术,抵抗有限域上的小私钥攻击。分析结果表明,在圆锥曲线上离散对数和大数分解双重困难问题下,该方案具有不可伪造性和强可验证性。与基于身份的方案相比,可减少2次对运算和1次哈希运算,提高了运算效率。
Aiming at the key management in public key cryptosystem and personal privacy protection for signers, a certificateless strong designated verifier signature scheme on conic curve over ring Zn is put forward by using the public key cryptosystem and signature scheme on conic curve over ring Zn. It is based on the RSA signature technology on the conic, which can resist the little private key attack compared with scheme on finite field. Analysis results show that there are properties of un-forgeable and strong designated in this scheme under the discrete logarithm problem on conic curve and large number factorization problem. Compared with the identity-based scheme, it can reduce two times pair operation and one time Hash operation, and has higher efficiency.
出处
《计算机工程》
CAS
CSCD
2013年第10期120-122,共3页
Computer Engineering
基金
陕西省自然科学基金资助项目(2009JQ1009)
陕西省自然科学专项基金资助项目(09Jk803)
咸阳师范学院专项科研基金资助项目(11XSYK305)
陕西省教育厅专项科研基金资助项目(2010JK893)
关键词
圆锥曲线
环Zn
无证书
强指定验证者
基于身份
离散对数
conic curve
ring Zn
certificateless
strong designated verifier
identity-based
discrete logarithm