期刊文献+

基于Gabor变换和极限学习机的贝类图像种类识别 被引量:4

Shellfish recognition based on Gabor transformation and extreme learning machine
下载PDF
导出
摘要 研究了基于Gabor变换和二维图像主成分分析(2DPCA)相结合的贝类图像识别方法。对贝类图像进行Gabor变换,提取其图像特征,确定了图像特征维数;采用2DPCA方法,对变换后的特征进行降维,并利用极限学习机(ELM)进行贝类图像的分类识别。与BP神经网络和支持向量机(SVM)实验对比发现,极限学习机分类器用于贝类识别不仅速度极快而且泛化性良好,算法具有较高的精度。 A method identifying shellfish image is proposed based on Gabor transformation and 2-dimensional principal component analysis (2DPCA). The characteristic was firstly extracted from shellfish image and the dimension magnitude of image is confirmed using Gabor transform. 2DPCA method was then employed to reduce the dimension of transformed characteristic. And the extreme learning machine (ELM) is employed to conduct the classification and recognition of shellfish image. Compared of back propagation neural network with support vector machine (SVM) experimental technique showed that ELM classifier has good speed and applicability for shellfish recognition, and the method was proved of higher accuracy and efficiency.
出处 《大连工业大学学报》 CAS 北大核心 2013年第4期310-312,共3页 Journal of Dalian Polytechnic University
关键词 GABOR变换 极限学习机 计算机视觉技术 图像识别 Gabor transformation extreme learning machine computer vision image recognition
  • 相关文献

参考文献6

  • 1SUN Dawen. Computer Vision Technology for Food Quality Evaluation [M]. Dublin: Elsevier Press,2007:122-125.
  • 2里红杰,陶学恒,于晓强.计算机视觉技术在海产品质量评估中的应用[J].食品与机械,2012,28(4):154-156. 被引量:11
  • 3邓万宇,郑庆华,陈琳,许学斌.神经网络极速学习方法研究[J].计算机学报,2010,33(2):279-287. 被引量:162
  • 4HUANG Guangbin, ZHU Qinyu, SIEW C K. Ex- treme learning machine., theory and applications [J]. Neuro Computing, :?006, 70(1/2/3) :489-501.
  • 5BELHUMEUR P N, HESPANHA J P, KRIEG- MAN D J. Eigenfaces vs. fisherfaces: recognition u- sing class specific linear projection[J]. IEEE Trans- actions on Pattern Analysis and Machine Intelligence, 1997, 19(7):711-720.
  • 6HUANG Linlin, SHIMIZU A, KOBATAKE H. Ro- bust face detection using Gabor filter features[J]. Pat- tern Recognition l.etters, 2005, 26(11) : 1641-1649.

二级参考文献36

  • 1林开颜,吴军辉,徐立鸿.基于计算机视觉技术的水果形状分级方法[J].农业机械学报,2005,36(6):71-74. 被引量:46
  • 2Hornik K. Approximation capabilities of multilayer feedforward networks. Neural Networks, 1991, 4(2): 251-257.
  • 3Leshno M, Lin V Y, Pinkus A, Schocken S. Multilayer feedforward networks with a nonpolynomial activation function can approximate any function. Neural Networks, 1993, 6(6) : 861-867.
  • 4Huang G-B, Babri H A. Upper bounds on the number of hidden neurons in feedforward networks with arbitrary bounded nonlinear activation functions. IEEE Transactions on Neural Networks, 1998, 9(1): 224-229.
  • 5Huang G-B. Learning capability and storage capacity of two hidden-layer feedforward networks. IEEE Transactions on Neural Networks, 2003, 14(2): 274-281.
  • 6Huang G-B, Zhu Q-Y, Siew C-K. Extreme learning machine: Theory and applications. Neurocomputing, 2006, 70 (1-3): 489-501.
  • 7Vapnik V N. The Nature of Statistical Learning Theory. New York: Springer, 1995.
  • 8Rousseeuw P J, Leroy A. Robust Regression and Outlier Detection. New York: Wiley, 1987.
  • 9Rumelhart D E, McClelland J L. Parallel Distributed Processing. Cambridge.. MIT Press, 1986, 1(2): 125-187.
  • 10Cristianini N, Shawe-Taylor J. An Introduction to Support Vector Machines. Cambridge: Cambridge University Press, 2000.

共引文献171

同被引文献17

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部