期刊文献+

改进关联规则数据挖掘在网络入侵检测中的应用 被引量:2

Improvement of association rules of data mining application in network intrusion detection
原文传递
导出
摘要 随着网络技术的广泛应用,网络系统的安全变得至关重要。入侵检测是保护网络系统安全的关键技术和重要手段,但现行的入侵检测达不到实际应用的需求。关联规则挖掘可以从海量数据中发现正常和异常的行为模式,有效地检测入侵。因此,研究关联规则的数据挖掘对于提高入侵检测的准确性和时效性具有非常重要的意义。 With the wide application of network technology,network security becomes critical.Intrusion detection is the key to protect the network security technology and an important tool,but not up to the existing intrusion detection practical applications.Association rule mining can be found in the data from the mass of normal and abnormal behavior patterns,to effectively detect intrusions.Therefore,the study association rule mining algorithm for improving intrusion detection accuracy and timeliness has very important significance.
作者 张群慧
出处 《网络安全技术与应用》 2013年第9期83-84,共2页 Network Security Technology & Application
关键词 关联规则 APRIORI算法 入侵检测 association rule Apriori algorithm IDS
  • 相关文献

参考文献2

二级参考文献53

  • 1Garcia-Teodoro P, Dlaz-Verdejo J, Macia-Fernandez G, et al. Anomaly-based Network Intrusion Detection: Techniques, Systems and Challenges [J]. Computers & Security, 2009, 28(1/2): 18-28.
  • 2Cakanyildirim M, Yue W T, Ryu Y U. The Management of Intrusion Detection: Configuration, Inspection, and Investment [J]. European Journal of Operational Research, 2009, 195( 1 ) : 186-204.
  • 3Ohta S, Kurebayashi R, Kobayashi K. Minimizing False Positives of a Decision Tree Classifier for Intrusion Detection on the Internet [J]. Journal of Network and Systems Management, 2008, 16(4) : 399-419.
  • 4Stillerman M, Marceau C, Stillman M. Intrusion Detection for Distributed Applications [ J ]. Communications of the ACM, 1999, 42(7): 62-69.
  • 5Marin-Blazquez J G, Perez G M. Intrusion Detection Using a Linguistic Hedged Fuzzy-XCS Classifier System [ J ]. Soft Computing, 2009, 13 ( 3 ) : 273-290.
  • 6Forrest S, Perelson A, Allen L. Self-noself Discrimination in a Computer [ C]//Proceedings of the 1994 IEEE Symposium on Research in Security and Priracty. Los Alamos: CA, 1994: 202-212.
  • 7Xiang C, Yong P C, Meng L S. Design of Multiple-level Hybrid Classifier for Intrusion Detection System Using Bayesian Clustering and Decision Trees [ J ]. Pattern Recognition Letters, 2008, 29(7) : 918-924.
  • 8Krugel C, Toth T, Kirda E. Service Specific Anomaly Detection for Network Intrusion Detection [ M ]. New York: ACM Press, 2002.
  • 9Valdes A, Skinner K A. Model-based Monitoring for Cyber Attack Detection [ C ]//Recent Advances in Intrusion Detection Proceedings. Toulouse: Springer-Verlag, 2000: 80-92.
  • 10Velasevic D, Bulatovic D. A Distributed Intrusion Detection System Based on Bayesian Alarm Networks [ J ]. Proc of CORE'99, 1999, 1740: 219-228.

共引文献20

同被引文献18

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部