期刊文献+

基于集成RBF神经网络的入侵检测研究

Intrusion Detection Research Based on the Integration of RBF Neural Network
原文传递
导出
摘要 本文提出了一种基于集成RBF神经网络的入侵检测研究,通过对初始化聚类子算法的改进,从而提高了RBF神经网络的训练速度,采用集成理论对RBF神经网络的集成以提高检测率。实验结果表明,集成神经网络比RBF神经网络的检测率提高了1%,且降低了误报率和漏报率。 This paper proposes an intrusion detection research based on the integration RBF neural network. By improving the initialization sub-clustering algorithm, the training speed of the RBF can be improved. By integrating some differential RBF neural network based on the integrated theory, the detection rate is improved. The experimental results show that compared with the detection rate of the RBF, that of the integrated neural network is increased by 1%, and the latter one reduces the false positive rate and the false negative rate.
作者 李秋德
出处 《网络安全技术与应用》 2013年第9期87-88,共2页 Network Security Technology & Application
关键词 入侵检测 聚类子算法 RBP神经网络 集成 intrusion detection sub-clustering algorithm RBF neural network integration
  • 相关文献

参考文献2

二级参考文献25

  • 1Klaus Julish. Data mining for intrusion detection:a critical review[R]. Switzerland:IBM Research, Zurich Research Laboratory, 2001.
  • 2Portnoy L, Eskin E, Stolfo S J. Intrusion detection with unlabeled data using clustering[C]. In:Proceedings of the ACM CCS Workshop on Data Mining for Security Applications,2001.
  • 3Han J, Kamber M. Data mining: concepts and techniques[M]. Morgan Kaufmann Publisher,2000.
  • 4Jain A, Murty M, Flynn P. Data clustering: a review[J]. ACM Computing Surveys, 1999, 31(3):513-521.
  • 5Guha S, Rastogi R, Shim K. ROCK: A robust clustering algorithm for categorical attributes[J]. Information Systems, 2000, 25(5):345-366.
  • 6Daniel Barbara, Julia Couto, Yi Li. COOLCAT: An entropy-based algorithm for categorical clustering[D]. George Mason University, Information and Software Engineering Department, October 1,2001.
  • 7Periklis Andritsos, Panayiotis Tsaparas, Renee J.Miller et al. LIMBO:a scalable algorithm to cluster categorical data[R]. University of Toronto, Department of Computer Science, 2003,7.
  • 8Li Xiang-yang. Clustering and classification algorithm for computer intrusion detection[D]. Arizone State University,2001.
  • 9Wenke Lee, Dong Xiang. Information-theoretic measures for anomaly detection[D].Computer Science Department, North Carolina State University, 2000.
  • 10Garey M,Johnson D.Computers and intractability:a guide to the theory of NP-completeness[M]. W.H.Freeman,1979.

共引文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部