期刊文献+

基于Add-drop型微环谐振腔的硅基高速电光调制器设计 被引量:4

Design of a high-speed silicon electro-optical modulator based on an add-drop micro-ring resonator
原文传递
导出
摘要 相比于传统的All-pass型微环谐振腔硅基电光调制器,Add-drop型微环谐振腔可提供更多的设计自由度,使调制器在不改变杂质掺杂浓度的情况下就能在调制带宽和消光比性能上获得均衡考虑.本文设计了基于Add-drop型微环谐振腔的高速、且在低调制电压下实现大消光比的硅基电光调制器,所用微环谐振腔的半径仅仅为20μm.重点分析了直波导与微环谐振腔的耦合对调制器性能的影响,发现较小的Drop端耦合系数有利于消光比的提高,但是不能同时达到最佳的调制带宽,因此设计上存在一个带宽和消光比性能上的折中考虑.根据优化设计的结果进行了实际器件的制作和测试.静态光谱测试表明,在3 V反向偏置电压的作用下,调制器的消光比最大可达12 dB.动态电光响应测试中,在仅仅1.2 V的信号幅值电压下测得了8 Gbps数据传输速率的清晰眼图. Silicon electro-optical modulators based on add-drop micro-ring resonators have the advantage of more freedom in designing high-extinction-ratio and large-bandwidth modulators without changing the ion doping processes of the chip. Here we design a high-speed silicon modulator based on an add-drop micro-ring resonator with a radius of 20 μm; it demonstrates high extinction ratio with low reverse bias. How the coupling between the straight waveguide and the ring resonator affects the performances is studied theoretically and it is found that a lower coupling coefficient at drop port leads to a higher extinction ratio but not the best bandwidth. Therefore, a balance should be considered between extinction ratio and bandwidth. According to the optimized result of the parameters the device is fabricated and tested. The spectrum testing indicates that the device can have 12 dB extinction ratio when it is operated at 3 V reverse bias. Furthermore, we have observed 8 Gbps open-eye diagram with only 1.2 V peak-to-peak signal voltage.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2013年第19期260-265,共6页 Acta Physica Sinica
基金 国家自然科学基金(批准号:60837001,61021003)资助的课题~~
关键词 电光调制器 绝缘体上的硅 微环谐振腔 载流子色散效应 electrode-optical modulator, silicon on insulator, micro-ring resonator, free-carrier dispersion effect
  • 相关文献

参考文献1

二级参考文献13

  • 1Xu Q F, Fattal D, Beausoleil R G 2008 Opt. Express 16 4309.
  • 2Seung J C, Zhen P, Qi Y, Sang J C, Dapkus P D 2005 IEEEPhoton. Technol. Lett. 17 106.
  • 3Jin L, Li M Y, He J J 2010 CLEO/QELS, Poster Session Ⅱ CJWA84.
  • 4Claes T, Bogaerts W, Bienstman P 2010 Opt. Express 18 22747.
  • 5Soref R A 1993 Proc. IEEE 81 1687.
  • 6Magdalena S N, Liu T, Wang X, Roberto R P 2007 Appl. Phys. Lett. 89 07110.
  • 7Park J, Lee T, Lee D, Kim S, Hwang W, Chung Y 2008 IEEE Pho- tonics Technology Letters 20 988.
  • 8Lee H, Kim G, Kim S, Chung Y 2009 CLEO/Pacific Rim Shang- hai, China pp 1-2.
  • 9Xu X J, Chen S W, Yu J Z, Tu X G 2009 J. Optics A Pure and Applied Optics 11 015508.
  • 10Poon J K S, Scheuer J, Mookhejea S, Paloczi G T, Huang Y Y, Yariv A 2004 Opt. Express 12 90.

共引文献9

同被引文献56

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部