期刊文献+

理赔额与理赔间隔相依的风险模型的若干结论(英文) 被引量:1

SOME RESULTS ON A RISK MODEL WITH DEPENDENCE BETWEEN CLAIM SIZES AND CLAIM INTERVALS
下载PDF
导出
摘要 本文研究了一类具有相依结构的风险模型.利用无穷小方法,得到了Gerber-Shiu罚金折现期望函数所满足的积分-微分方程,给出了破产时刻,破产赤字及破产前瞬时盈余的拉普拉斯变换的积分-微分方程的应用.最后,在具有常数红利边界下的同一风险模型中,分析了红利支付的期望现值. In this article, the risk model with a dependent setting is considered. By using differential argument, an integro-differential equation for some Gerber-Shiu discounted penalty functions for the exponentially distributed claim sizes is derived. Applications of the integro- differential equation are given to the Laplace transform of the time of ruin, the deficit at ruin, and the surplus immediately before ruin occurs. Finally, we analyze the expected present value of dividend payments in the same risk model with a constant dividend barrier.
出处 《数学杂志》 CSCD 北大核心 2013年第5期781-787,共7页 Journal of Mathematics
基金 Supported by Humanities and Social Sciences Project of the Ministry Education of China(13YJC630150 09YJC910004 10YJC630092) Natural Science Foundation of Shandong Province(ZR2010GL013) Research Program of Higher Education of Shandong Province(J10WF84) Natural Science Foundation of Shandong Province(ZR2012AQ013) Major Cultivation Project of Shandong Jiaotong University
关键词 风险模型 相依索赔额 常值红利边界 risk model interclaim-dependent claim sizes constant dividend barrier
  • 相关文献

参考文献4

二级参考文献24

  • 1董迎辉,王过京.相关负风险和模型的破产概率[J].应用概率统计,2004,20(3):301-306. 被引量:21
  • 2Grandell Jan. Aspects of risk theory[M]. New York: Spring-Verlag. 1991.
  • 3Lin Shuangming,Lu Yi. On the expected discounted penalty Functions for two classes of risk process [J]. IME,2005,36 : 179-193.
  • 4Ambagaspitiva. On the distribution of two classes of aggregate claims. [J]. IME. 1998,23:15-19.
  • 5Yuen Kam C. , Guo Junyi, Wu Xueyuan. On a correlated aggregate claims model with Poisson and Erlang risk processes. [J]. IME. ,2002, 31: 205-214.
  • 6汉斯 U.盖伯.数学风险论导引[M].北京:世界图书出版社,1979.
  • 7Dickson Hipp.. On the time to ruin for Erlang(2) risk process[J], IME.. 2001, 29: 333-344.
  • 8Albrecher H,Kainhofer R.Risk theory with a nonlinear dividend barrier[J].Computing,2002,68(4):289-311.
  • 9Albrecher H,Hartinger J,Tichy R.On the distribution of dividend payments and the discounted penalty function in a risk model with linear dividend barrier[J].Scandinavian Actuarial Journal,2005,24(2):103-126.
  • 10Dickson D C M,Waters H R.Some optimal dividend problems[J].ASTIN Bulletin,2004,34(1):49-74.

共引文献2

同被引文献8

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部