期刊文献+

一类耗散型Camassa-Holm方程的解的爆破 被引量:1

THE BLOW-UP OF THE SOLUTIONS FOR A DISSIPATIVE CAMASSA-HOLM EQUATION
下载PDF
导出
摘要 本文研究了带耗散项λuxx的Camassa-Holm方程的局部适定性和爆破现象.由Kato定理得到局部适定性的结果,证明了解的爆破机制,并且证明了当初值满足一定条件时解发生爆破,最后研究了爆破解的爆破率. In this paper, we study the local well-posedness and the blow-up phenomenon of the Gamassa-Holm equation with dissipative term λuxx. By using the Kato's, the local well-posedness is obtained and the blow-up mechanism is proved, two results of blow-up solutions with certain initial profiles are established, the blow-up rate of the blow-up solutions is studied finally.
作者 徐能 李子宝
出处 《数学杂志》 CSCD 北大核心 2013年第5期871-880,共10页 Journal of Mathematics
基金 国家自然科学基金(10961029)资助项目
关键词 耗散型Camassa-Holm方程 局部适定性 解的爆破 爆破率 an dissipative Camassa-Holm equation local well-posedness blow-up blow-uprate
  • 相关文献

参考文献16

  • 1Fuchssteiner B, Fokas A S. Symplectic structures, their B:cklund transformations and hereditary symmetries[J]. Physica D: Nonlinear Phenomena, 1981, 4(1): 47-66.
  • 2Camassa R, Holm D D. An integrable shallow water equation with peaked solitons[J]. Physical Review Letters, 1993, 71(11): 1661-1664.
  • 3Beals R, Sattinger D H, Szmigielski J. Acoustic scattering and the extended Korteweg-de Vries hierarchy[J]. Advances in Mathematics: 1998, 140(2): 190-206.
  • 4Camassa R, Holm D D, Hyman J M. A new integrable shallow water equation[J]. Advances in Appl. Mechanics, 1994, 31(31): 1-33.
  • 5Fuchssteiner B, Fokas A S. Symplectic structures, their B:cklund transformations and hereditary symmetries[J]. Physica D: Nonlinear Phenomena, 1981, 4(2): 47-66.
  • 6Constantin A. On the scattering problem for the Camassa-Holm equation[J]. Proceedings of the Royal Society of London, Series A: Mathematical, Physical and Engineering Sciences, 2001, 457(2008): 953-970.
  • 7Constantin A, Escher J. Global existence and blow-up for a shallow water equation[J]. Ann. Scuola Norm. Sup. Pisa C1. Sci., 1998, 26(2): 303-328.
  • 8Constantin A, Escher J. Well-posedness, global existence, and blowup phenomena for a periodic quasi-linear hyperbolic equation[J]. Communications Pure Appl. Math., 1998, 51(5): 475-504.
  • 9Danchin R. A few remarks on the Camassa-Holm equation[J]. Diff. Int. Equ., 2001, 14: 953-988.
  • 10Constantin A. Existence of permanent and breaking waves for a shallow water equation: a geometric approach[J]. Annales de l'institut Fourier, 2000, 50(2): 321-362.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部