期刊文献+

正三棱柱的Bufon投针问题 被引量:1

BUFFON NEEDLE PROBLEM IN REGULA TRI-PRISM
下载PDF
导出
摘要 本文研究了正三棱柱有界网格的Bufon投针问题.利用限弦函数和限弦投影函数两个工具,获得了正三棱柱运动测度的具体表达式及一个新的几何概率结果. This paper use the tools of restricted chord function and the restricted chord projection function, to solve the Buffon needle problem in Regular Tri-prism for one kind of Bounded Lattices. Individual expressions for the kinematic measure for Regular Tri-prism and a new conclusion for geometric probability are established.
出处 《数学杂志》 CSCD 北大核心 2013年第5期887-890,共4页 Journal of Mathematics
基金 武汉科技大学冶金工业过程系统科学湖北省重点实验室开放基金资助项目(C201005)
关键词 几何概率 积分几何 随机线段 运动测度 geometric probability integral geometry random segment kinematic measure
  • 相关文献

参考文献5

二级参考文献18

  • 1赵静,李德宜,王现美.凸域内弦的平均长度[J].数学杂志,2007,27(3):291-294. 被引量:7
  • 2Ren Delin.Topics in Integral Geometry.Singapore,New Jersey,London,Hongkong:World Scientic,1994.
  • 3Ren Delin,Zhang Gaoyong.Random convex sets in a lattice of parallelograms.Acta Mathematica Scientia,1991,11:317-326.
  • 4Aleman A,Stoka M,Zamfirescu T.Convex bodies instead of needles in Buffon's experiment.Geometriae Dedicata,1997,67:301-308.
  • 5Duma A,Stoka M.Geometrical probabilities for convex test bodies.Beitr(a)ge Algebra Geom,1999,40(1):15-25.
  • 6Stola M.(U)ne extension du problème de l'aiguille de Buffon dans l'espace euclidien Rn.Bull Unione Mat Italiana,1974,10:386-389.
  • 7Bosetto E.Geometric Probabilities in the Euclidean Space E3.Dissertation.Hagen:Fernuniversit(a)t,1996.
  • 8Zhang Gaoyong,Li Rongze.The kinematic measure foumulae of segment of fixed length within some convex polygons and their applications to geometric probability problems.Wuhan Iron and Steel University,1984,1:106-128.
  • 9Santalo L A.Integral Geometry and Geometric Probability.London:Addison-Wesley Publishing Company,1976.
  • 10Ren Delin. Topics in intergral geometry[M]. Singapore: World Scientific, 1994 : 70-78.

共引文献4

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部