期刊文献+

α带小波框架的提升

The Lifting of Band Wavelet Frame
下载PDF
导出
摘要 系统地研究了α带小波框架的提升方案.首先,给出了{ψl;j,k}n l=1,j,k∈z构成α带小波框架的充分条件;其次,设计了基于符号函数的两种小波框架的提升方案;最后,基于B样条函数构造了相应的数值算例. In this paper, two lifting schemes of alpha-band wavelet frame are given. Firstly, we give the sufficient condition of constitutes alpha-band wavelet frame. Then, we design the two lifting schemes of wavelet frame based on symbolic function. Finally, the corresponding numerical examples are constructed based on B spline function.
出处 《河南大学学报(自然科学版)》 CAS 北大核心 2013年第5期498-504,共7页 Journal of Henan University:Natural Science
基金 国家自然科学基金项目资助课题(1096100161261043)
关键词 符号函数 小波框架 提升方案 伸缩因子 symbolic function wavelet frame lifting scheme scaling factor
  • 相关文献

参考文献14

  • 1Benedetto J J, Li S. The theory of muliresolution analysis frame and applications to filter banks [J].Applied and Computa tional Harmonic Analysis,1998(5):389-427.
  • 2Chui C K, Shi X L. Orthonormal Wavelets and Tight Frames with Arbitrary Real Dilations [J].Applied and Computational Harmonic Analysis,2000(9) :243-264.
  • 3Wang H, Peng L. Parameterizations of univariate wavelet tight frames with short support [J].Communieations in Nolinear Science and Numerical Simulation, 2006(11):663-677.
  • 4Han B, Kwon S G, Park S S. Riesz multiwavelet bases [J].Applied and Computational Harmonic Analysis, 2006(20) : 161 -183.
  • 5Charina M, St6ckler J. Tight wavelet frames for irregular multiresolution analysis [J]. Applied and Computational Har monic Analysis, 2008(25) :98-113.
  • 6Han B. Construction of wavelets and framelets by the projection method [J]. International Journal of Mathematical Sci- ences, 2008(1) :1'-40.
  • 7Han B. Dual multi wavelet frames with high balancing order and compact fast frame transform [J].Applied and Computa- tional Harmonic Analysis, 1009(26) : 14-42.
  • 8Gabardo J P. Weighted irregular Gabor tught frames and dual systems using windows in the Schwartz class [J].Journal of functional analysis, 2009,256 : 635 - 672.
  • 9Ron A, Shen Z. Affine systems in L2 (Ra) :the analysis of the analysis operator [J:.J Functional Anal Appl, 1997,148 (121) :408-447.
  • 10Aldroubi A. Portraits of frames [J].Proc Amer Math Soc, 1995,123(6):1661-1668.

二级参考文献17

  • 1Benedetto J J,Powell A M,Yilmaz O.Sigma-delta (Σ△) quantization and finite frames.IEEE Transactions Inform Theory,2006,52(5):1990-2005.
  • 2Zhang Y,Wang Y Y,Wang W Q,et al.Doppler ultrasound signal denoising based on wavelet frames.IEEE Transactions on Ultrasonics,Ferroelectrics,and Frequency Control,2001,48(3):709-716.
  • 3Shen L X,Papadakis M.Image denoising using a tight frame.IEEE Transactions Image Processing,2006,15(5):1254-1263.
  • 4Aldroubi A.Portraits of frames.Proc Amer Math Soc,1995,123(6):1661-1668.
  • 5Benedetto J J,Treiber O M.Wavelet Frames:Multiresolution Analysis and Extension Principles//Debnath L,ed.Wavelet Transforms and Time-frequency Signal Analysis.Boston:Birkhauser,2001:1-36.
  • 6Ron A,Shen Z.Affine systems in L2(Rd):the analysis of the analysis operator.J Functional Anal Appl,1997,148(2):408-447.
  • 7Ron A,Shen Z.Compactly supported tight affine spline frames in L2(Rd).Math Comp,1998,67(221):191-207.
  • 8Ron A,Shen Z.Construction of Compactly Supported Affine Frames in L2(Rd)//Lau K S,ed.Advances in Wavelets.Berlin:Springer-Verlag,1998:27-49.
  • 9Daubechies I,Han B,Ron A,et al.Framelets:MRA-bnsed constructions of wavelet frames.Appl Comp Harmonic Anal,2003,14(1):1-46.
  • 10Benedetto J J, Li S. The theory of multiresolution analysis frames and application to filter banks. Appl Comp Harm Anal, 1998, 5: 398-427

共引文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部