期刊文献+

橡胶衬套材料的超弹性力学行为研究(英文) 被引量:5

A Study on Mechanical Behavior of Hyperelastic Material for Rubber Bushing
下载PDF
导出
摘要 车辆悬架的橡胶衬套主要由橡胶材料和被硫化在橡胶上的金属或塑料衬套组成,是一种影响车辆行驶平顺性、操纵稳定性以及NVH等性能的不可或缺的零件。研究了橡胶衬套特性,通过在ABAQUS和HyperStudy中使用3种类型的材料试验数据,引入一种方法来对所选择的超弹性系数进行参数识别及拟合,建立橡胶衬套的高精度有限元模型,设置橡胶衬套的实际约束边界条件,通过仿真试验以得到相应径向与轴向刚度曲线。对仿真和真实试验结果进行对比,发现Van der Waals模型具有比其他本构模型更优越的表现,针对提出该某类衬套,该模型能更好地拟合其超弹性系数。 The rubber bushings of vehicle suspension,made of mainly rubber materials and a metal or plastic sleeve vulcanized to rubber,are indispensable components impacting vehicle ride comfort,handle stability and NVH etc.In this paper,the characteristics of bushing rubbers were researched to intensive analyze how the rubber bushing affects vehicle performances.A method is introduced to identify and fit the hyperelastic coefficients of the selected constitutive model by u-sing three types of material test data in ABAQUS and HyperStudy,and a more high-accurate Fi-nite Element (FE)model of rubber bushing was built to simulate the radial and axial stiffness curves by setting actual constraint conditions.A comparison was carried out between the simula-tion results and experimental results.The conclusion shows that the Van der Waals model is like-ly a clearer superiority representation than other constitutive models,which can be used for the simulation to better fit the hyperelastic coefficients.
出处 《机床与液压》 北大核心 2013年第18期19-24,共6页 Machine Tool & Hydraulics
基金 Sponsored by National Natural Science Foundation of China(51205433) National Natural Science Foundation of Chongqing(cstc2011jjA60003) 2012 Open Foundation of Key Laboratory of Manufactory and Test Techniques of Automobile Parts,Ministry Education,Chongqing University of Technology
关键词 橡胶衬套 本构模型 材料试验 参数识别 rubber bushing constitutive model material test parameter identification
  • 相关文献

参考文献3

二级参考文献62

  • 1任旭春,姚振汉.一种新的橡胶-帘线复合材料的模型及其参数识别方案[J].工程力学,2006,23(12):180-187. 被引量:8
  • 2Chayltcn D J, Yang J. A review of methods to characterize rubber elastic behavior for use in finite element analysis [J]. Rubber chemistry and technology, 1994, 67(3): 481--503.
  • 3Miller K. Testing elastomers for hyperelastic material models in frnite element analysis [M]. Rubber Technology International. UK: UK & International Press, 1999.
  • 4Boyce M C, Arruda E M. Constitutive models of rubber elasticity: a review [J]. Rubber chemistry and technology, 2000, 73(3): 504--520.
  • 5Yeoh O H. Some forms of the strain energy for rubber [J]. Rubber Chemistry and technology, 1993, 66(5): 754-- 771.
  • 6Ogden R W. Nearly isotropic elastic deformations: application to rubberlike solids [J]. Journal of the Mechanics and Physics of Solids, 1978, 26(1): 37--57.
  • 7Rivlin R S. The elasticity of rubber [J]. Rubber Chemistry and Technology, 1992, 65(3): 51 --67.
  • 8Feng X, Yah X, Wei YinTao. Analysis of extension propagation process of an interface crack between belts of a radial tire using a finite element method [J]. Appl. Math. Modeling, 2004, 28(2): 145--162.
  • 9Wei Y T, Nasdala L, Rothert H. Analysis of tire rolling contact response by REF model [J]. Tire Science and Technology, 2004, 32(4): 214--235.
  • 10Xia Yong, Dong Yi, Xia Yuanming, Li Wei. A novel planar tension test of rubber for evaluating the prediction ability of the modified eight-chain model under moderate finite deformation [J]. Rubber Chemistry and technology, 2005, 78(5): 879-- 892.

共引文献341

同被引文献48

引证文献5

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部