期刊文献+

极化-空时级联处理性能分析 被引量:2

Performance analysis of polarization space time cascade processing
下载PDF
导出
摘要 结合极化信息可提高空时自适应处理(STAP)的慢速动目标检测性能,在级联处理结构下,为有效分析极化-空时级联处理(P-ST)和空时-极化级联处理(ST-P)的具体性能,推导了极化-空时联合处理与级联处理的自适应滤波权矢量形式,定量分析了P-ST和ST-P的检测性能与级联顺序、目标和杂波的极化区分度、空时区分度的关系,为选择合适的级联处理方法提供了依据.仿真结果有效验证了分析结论的正确性. Polarization-SpaceTime or SpaceTime-Polarization cascade processing can detect low velocity moving targets with polarized information on the received signal.To make a detailed analysis of the cascade processing,the adaptive weight is deduced.Then the detection performance against the cascade order,the space-time division and polarization division between the signal and clutter are qualitatively analysised,which would provide an instruction for choosing an appropriate cascade processing order.Simulation verifies the correctness of the analyzed conclusion.
出处 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2013年第5期1-7,共7页 Journal of Xidian University
基金 长江学者与创新团队发展计划资助项目(IRT-0954) 国家自然科学基金资助项目(60901066) 国家部委预研基金资助项目(9140xxxx001) 教育部博士点基金资助项目(20090203120006)
关键词 极化雷达 极化-空时信号处理 级联处理 自适应处理 目标检测 polarization radar polarization space-time signal processing cascade processing adaptive processing target detection
  • 相关文献

参考文献10

  • 1Melvin W L. A STAP Overview [J]. IEEE Transactions on Aerospace and Electronic Systems, 2004, 19(1): 19-35.
  • 2Cristallini D, Burger W. A Robust Direct Data Domain Approach for STAP[J]. IEEE Transcations on Signal Processing, 2012, 60(3): 1283-1294.
  • 3Brennan L E, Reed I S. Theory of Adaptive Radar [J]. IEEE Transactions on Aerospace and Electronic Systems, 1973, 9(2): 237-252.
  • 4杨垒,王彤,保铮.解运动目标径向速度模糊的一种新方法[J].西安电子科技大学学报,2009,36(2):189-192. 被引量:9
  • 5Li X W, Xia X G. Location and Imaging of Elevated Moving Target Using Multi-Frequency Velocity SAR with Cross-Track Interferometry[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(2): 1203-1212.
  • 6Li X W, Xia N G. Multiple-frequency Interferometric Velocity SAR Location and Imaging of Elevated Moving Target [C]//IEEE International Conference on Acoustics, Speech and Signal Processing-Proceedings. Piscataway: IEEE, 2010: 2810-2813.
  • 7Kelly E J. An Adaptive Detection Algorithm[J]. IEEE Transactions on Aerospace and Electronic System, 1986, 22(1): 115-127.
  • 8Park H R, Kwak Y G, Wang H. Efficient Joint Polarization Space-time Processor for Nonhomogeneous Clutter Environments[J]. Electronics Letters, 2002, 38(25): 1714-1715.
  • 9Lombardo D, Pastina D, Bucciarelli T. Adaptive Polarimetric Target Detection with Coherent Radar [J]. IEEE Transactions on Aerospace and Electronic Systems, 2001, 37(4): 1194-1220.
  • 10Park H R, Wang H. Adaptive Polarization-space-time Domain Radar Target Detection in Inhomogeneous Clutter Environments[J]. IEE Proceedings-Radar, Sonar and Navigation, 2006, 153(1): 35-43.

二级参考文献8

  • 1Dias J, Marques P. Moving Targets Detection and Trajectory Parameters Estimation Using a Single SAR Sensor [J]. IEEE Trans on Aerospace and Electronic Systems, 2003, 39(4): 604-624.
  • 2Moreira J R, Wolfgang K. A New MTI-SAR Approach Using the Reflectivity Displacement Method [J]. IEEE Trans on Geoscience and Remote Sensing, 1995, 33(5): 1238-1244.
  • 3Klemm R. Space-time Adaptive Processing.. Principles and Applications [M]. London: IEE Press, 1998.
  • 4Ender J H G. Space-time Processing for Multi-channel Synthetic Aperture Radar[J]. Electron Commun Eng J, 1999, 11 (1) : 29-38.
  • 5Yadin E. A Performance Evaluation Mode for a Two Port Interferometer SAR-MTI[C]//IEEE 1996 National Radar Conference. Ann Arbor, Michigan: IEEE, 1996: 261-266.
  • 6Nohara T J, Weber P, Premji A, et al. SAR-GMTI Processing with Canadaps Radarsat 2 Satellite[C]//Adaptive Systems for Signal Processing, Communications, and Control Symposium. Lake Louise: IEEE, 2000: 379-384.
  • 7Gierull C H. Ground Moving Target Parameter Estimation for Two-channel SAR[J]. IEE Proc Radar Sonar Navig, 2006, 153(3): 224-233.
  • 8王彤,保铮,廖桂生.机载雷达自适应ST-MTI方法研究[J].西安电子科技大学学报,2000,27(5):537-541. 被引量:3

共引文献8

同被引文献26

  • 1Allen B,Ghavami M.Adaptive Array Systems,Fundamen- tals and Applications[M].Chichester,U.K.:Wiley,2005:Chapter I.
  • 2Li J,Stoica P.Robust Adaptive Beamforming[M].Hobo- ken,NJ:Wiley,2005:1-47.
  • 3Vega L R,Benesty H R J,Tressens S.A fast robust re- cursive least-squares algorithm[J].IEEE Transactions on Signal Processing,2009,57(3):1209-1216.
  • 4Li Jian,Stoica P.Robust Adaptive Beamforming[M].New Jersey,USA Wiley,2005:49-60.
  • 5Bo Tang,Yu Zhang,Jun Tang,et al.Close form maxi- mum likelihood covariance matrix estimation under a knowledge-aided constraint[J].IET Radar Sonar Na- ving.,2013,7(8):904-913.
  • 6Goldstein J S,Reed I S,Schaf L L.A multistage repre- sentation of the wiener filter based on orthogonal projec- tions[J].IEEE Trans on Information Theory,1998,44(7):2943-2959.
  • 7Strobach P.Low-rank adaptive filters[J].IEEE Transac- tions on Signal Processing,1996,44(12):2932-2947.
  • 8Badeau R,David B,Richard G.Fast approximated pow- er iteration subspace tracking[J].IEEE Transactions on Signal Processing,2005,53(8):2931-2941.
  • 9Doukopoulos X,Moustakides G.Fast and stable subspace tracking[J].IEEE Transactions on Signal Processing,2008,56(4):1452-1465.
  • 10Mestre X,Lagunas M.Finite sample size effect on MV beamformers:Optimum diagonal loading factor for large arrays[J].IEEE Transactions on Signal Processing,2006,54(1):69-82.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部