期刊文献+

多性能指标约束的SoC软硬件划分算法 被引量:1

SoC hardware/software partitioning algorithm for multi-performance index constraints
下载PDF
导出
摘要 针对多性能指标的片上系统软硬件划分问题,提出一种基于自适应混沌遗传退火的划分算法.该算法以遗传算法为基础,提出新的基于多约束条件的带不同比例惩罚项的目标函数,利用混沌操作生成初始种群,并引入自适应变异操作.在种群个体趋于相似时,采用自适应混沌策略优化适应度较差的个体;对遗传操作后较优个体则采用退火策略进行优化.仿真结果表明,与模拟退火算法和遗传算法相比,该算法获得的最低功耗在200个节点下分别降低了9.8%和4.7%,在300个节点下分别降低了5.6%和4%. A new partitioning algorithm based on adaptive chaotic genetic annealing is proposed to solve the hardware/software partitioning problem of System on Chip (SoC) on the multi-performance index.A new objective function with different proportions of punishment based on multi-constraints is presented in this algorithm which is based on the genetic algorithm.The chaos operation is employed to generate the initial population,and the adaptive mutation operator is adopted.Individuals with poor fitness are optimized by the adaptive chaos strategy as the population individuals which tend to be similar.The optimum individuals upon genetic manipulation are optimized by the annealing strategy.Simulation results suggest that the algorithm can reduce the least power consumption by 9.8% and 4.7% in the case of 200 nodes,and by 5.6% and 4% in the case of 300 nodes,respectively,compared with the simulated annealing algorithm and genetic algorithm.
出处 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2013年第5期92-98,共7页 Journal of Xidian University
基金 国家杰出青年科学基金资助项目(60725415) 国家自然科学基金资助项目(60676009 60902080)
关键词 片上系统 软硬件划分 自适应混沌 遗传退火算法 system on chip hardware/software partitioning adaptive chaos genetic annealing algorithm
  • 相关文献

参考文献7

二级参考文献87

  • 1邢冀鹏,邹雪城,刘政林,陈毅成.一种基于改进模拟退火算法的软硬件划分技术[J].微电子学与计算机,2006,23(5):31-33. 被引量:5
  • 2Gupta R K, Micheli G D. Hardware-software CO-synthesis for digital systems[J]. IEEE Design & Test of Computer, 1993, 10(3) :29- 41.
  • 3Ernst R, Henkel J, Benner T. Hardware software co-synthesis for micro-controllers [J]. IEEE Design & Test of Computer, 1993,10(4) :64 - 75.
  • 4Kalavade A, Lee E A. The extended partitioning problem: Hardware/software mapping, scheduling and implementationbin selection[ J ]. Design Automation for Embedded System, 1997,2(2) : 125 - 164.
  • 5Niemann R,Marwedel P. Hardware/software partitioning using integer programming[A] .Proceedings of European Design and Test Conference[C]. Paris, 1996.473 - 479.
  • 6Madson J,Grode J, Knudsen P V, et al. LYCOS: The lyngby CO-synthesis system [J]. Design Automation for Embedded System, 1997,2(2) : 195 - 236.
  • 7Grode J, Knudsen P V, J Madsen. Hardware resource allocation for hardware/software partitioning in the LYCOS system[A]. Proceedings of Design Automation and Test in Europe [C]. Paris, 1998.33 - 36.
  • 8Abdenour Azzedine, Jean Diguet. JeanLac Pillippe. Large exploration for HW/SW partitioning of multi-rate and a periodic real-tirne systems[A]. 10^th International Workshop on Hardware/Software Co-Design[ C ]. Colorado, 2002.85 - 90.
  • 9B Knerr,M Holzer,M Rupp. HW/SW partitioning using high level metrics [A]. International Conference on Computing, Communications and Control Technologies (CCCT) [ C ]. Austin,2004.33 - 38.
  • 10Jefrey Horn,Nicholas Nafpliotis,David E Goldberg.A niched Pareto genetic algorithm for multi-objective optimization[A]. Proceedings of the First IEEE Conference on Evolutionary Computation[C]. IEEE World Congress on Computational Intelligence, Orlando, FL, USA, 1994.

共引文献100

同被引文献7

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部