摘要
针对广义Gauss-Markov(G-M)模型,采用Bayes估计方法获得参数的Bayes线性无偏估计(BLUE),在均方误差矩阵准则下与广义最小二乘(GLS)估计进行比较,导出了4种相对效率的界,讨论了在PC准则下BLUE相对于GLS估计的优良性.
The estimation method and properties of unknown parameters have been studied in the general- ized Gauss-Markov(G-M)model. The Bayes linear unbiased estimators (BLUE) of parameters have been derived in Bayes estimation method. Then we have compared the Bayes estimator with generalized least square (GLS) estimator in parametric part under the mean square error matrix criterion conditions. Fur thermore, we have obtained the bounds of four relative efficiencies, respectively. In addition, the superior ity of the BLUE has been studied with respect to GLS estimator in terms of the PC criterion.
出处
《西南师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2013年第9期1-7,共7页
Journal of Southwest China Normal University(Natural Science Edition)
关键词
广义最小二乘估计
Bayes线性无偏估计
均方误差矩阵准则
相对效率
PC准则
generalized least square estimator Bayes linear unbiased estimator the mean square error ma-trix criterion relative efficiency Pitman closeness criterion