期刊文献+

广义G-M模型参数的Bayes线性无偏估计及其优良性

On Superiority of Bayes Linear Unbiased Variance Estimator in Generalized Gauss-Markov Model
下载PDF
导出
摘要 针对广义Gauss-Markov(G-M)模型,采用Bayes估计方法获得参数的Bayes线性无偏估计(BLUE),在均方误差矩阵准则下与广义最小二乘(GLS)估计进行比较,导出了4种相对效率的界,讨论了在PC准则下BLUE相对于GLS估计的优良性. The estimation method and properties of unknown parameters have been studied in the general- ized Gauss-Markov(G-M)model. The Bayes linear unbiased estimators (BLUE) of parameters have been derived in Bayes estimation method. Then we have compared the Bayes estimator with generalized least square (GLS) estimator in parametric part under the mean square error matrix criterion conditions. Fur thermore, we have obtained the bounds of four relative efficiencies, respectively. In addition, the superior ity of the BLUE has been studied with respect to GLS estimator in terms of the PC criterion.
作者 刘琼荪 秦峰
出处 《西南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第9期1-7,共7页 Journal of Southwest China Normal University(Natural Science Edition)
关键词 广义最小二乘估计 Bayes线性无偏估计 均方误差矩阵准则 相对效率 PC准则 generalized least square estimator Bayes linear unbiased estimator the mean square error ma-trix criterion relative efficiency Pitman closeness criterion
  • 相关文献

参考文献8

二级参考文献35

共引文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部