期刊文献+

金融数据时间序列相似性度量的应用研究 被引量:1

A Similarity Measure Research for Financial Time Series
下载PDF
导出
摘要 从应用角度对时间序列数据挖掘中的关键技术一相似性度量一进行了研究。实现了对时间序列的分段线性表示,并将其用于当前主要的几种时间序列距离度量算法。通过将各距离度量算法用于股票收盘数据分析实验,得出实验数据。通过对实验结果的分析并结合各算法的原理,对各方法的适用情况和执行效率进行了分析及比较。通过分析可知,每种算法有自己的特点及适用情况。对于实际应用,应根据实际需求选择合适的距离度量算法。 Similarity measurement is the key technology in time series data mining. Present most existing time-sequence distance measurement algorithms, in this paper, are implemented using piecewise linear representation of financial data time series. Through the analysis of experimental results and according to the principle of each algorithm, applicable situation and the execu- tion efficiency of each method are analyzed and compared. The analysis shows that each algorithm has its own applicable condi- tion. For practical application, the distance measurement algorithm should be chosen according to actual needs.
作者 肖娜 郝泳涛 XIAO Na, HAO Yong-tao (CAD Research Center of Tongji University, Shanghai 201804, China)
出处 《电脑知识与技术》 2013年第9期5600-5604,共5页 Computer Knowledge and Technology
关键词 时间序列 数据挖掘 分段线性表示 相似性度量 编辑距离 time series data mining si~nilarity piecewise linear representation edit distance
  • 相关文献

参考文献10

  • 1Mitra S,Pal S K, Mitra P.Data mining in soft computing framework:A survey[J].IEEE Transactions on Neural Networks,2002,13(1):3- 14.
  • 2Agrawal R, Faloutsos C,Swami A.Efficient similarity search in sequence databases[C].Chicago,IL:Proc of the 4th Int'l Conf on Founda- tions of Data Organization and Algorithms,1993:69-84.
  • 3邓纳姆(Dunham,M.H.).数据挖掘教程[M].北京:清华大学出版社,2005.5.
  • 4Th. Pavlidis,SL Horwitz.Segmentation of Plane Curves[J]. IEEE Transactions on Computer, 1974,23(8):860-870.
  • 5Perng C-S, Wang H, and Zhang S R. Landmarks: a new model for similarity-based pattern querying in time series databases[C]. Pro- ceeding of the 16th International Conference on Data Engineering, San Diego, CA, USA, Feb.28-Mar.3,2000:33-42.
  • 6Fu T, Chung F,Luk R,et al. Stock time series pattern matching: template-based vs. rule-based approaches[J]. Engineering Applica- tions of Artificial Intelligence, 2007, 20(3):347-364.
  • 7Phetking C,Sap M,Selamat A. Identifying zigzag based perceptually important points for indexing financial time series[C]. Proceedings of the 8th International Conference on Cognitive Informaties, Hong Kong, China, Jun. 15-17,2009:295-301.
  • 8Perng C S, Wang H,Zhang S R. Landmarks: a new model for similarity-based pattern querying in time series databases[C]. Proceed- ing of the 16th International Conference on Data Engineering, San Diego, CA, USA, Feb.28-Mar.3,2000:33-42.
  • 9Donald J. Berndt, James Clifford. Using Dynamic Time Warping to Find Patterns in Time Series[C]. In Proceedings of the KDD Work- shop, Seattle, WA. 1994:359-370.
  • 10汤胤.时间序列相似性分析方法研究[J].计算机工程与应用,2006,42(1):68-71. 被引量:17

二级参考文献22

  • 1N Crato,B K Ray.Model selection and forecasting for long-range dependent processes[J].Journal of Forecasting, 1996 ; ( 15 ) : 107-125.
  • 2Christos Faloutsos,M Ranganathan,Yannis Manolopoulos.Fast Subsequence Matching in Time-Series Database[C].In:Proceedings 1994;ACM SIGMOD Conference,Minneapolis,1994.
  • 3Davtmd Rafiei ,Alberto O Mendelson. Querying Time Series Data Based on Similarity[C].In:IEEE TRANS ON KNOWLEDGE AND DATA ENG,2000- 12(5 ).
  • 4Chang-Shing Perng,Hai-un Wang,Sylvia R Zhang et al.Landmarks- A New Model for Similarity-Based Pattern Querying in Time Series Databases[C].In: 16th International Conference on Data Engineering ICDE'2000,2000 - 33 -42.
  • 5Ge,Smyth.Deformable Markov model templates for time-series pattern matching[J].KDD,2000 : 81-90.
  • 6Altrock yon Constantin.Fuzzy Logic and Neuro Fuzzy Applications Explained[M].Prentice Hall, Englewood Cliffs, 1995.
  • 7Tsoukalas H Leftefi,Uhrig E Robert.Fuzzy and Neural Approaches in Engineering[M].New York :John Wiley, 1997.
  • 8Zadeh A Lotfi,Fu King-Sun,Tanaka Kokichi et al.Fuzzy Sets and their Applications to Cognitive and Decision Processes[M].New York: Academic Press, 1975.
  • 9Antonin Guttman.R-Trees:A Dynamic Index Structure for Spatial Searching[C].In:SIGMOD Conference, 1984:47-57.
  • 10Eamonn J Keogh,Michael J Pazzani.Scaling up Dynamic Time Warping for Datamining Applications.Knowledge Discovery and Data Mining,in ACM, 2000 : 1 -58.

共引文献18

同被引文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部